Another ordering of the ten cardinal characteristics in Cichoń's diagram

Jakob Kellner; Saharon Shelah; Anda R. Tănasie

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 1, page 61-95
  • ISSN: 0010-2628

Abstract

top
It is consistent that 1 < add ( 𝒩 ) < add ( ) = 𝔟 < cov ( 𝒩 ) < non ( ) < cov ( ) = 2 0 . Assuming four strongly compact cardinals, it is consistent that 1 < add ( 𝒩 ) < add ( ) = 𝔟 < cov ( 𝒩 ) < non ( ) < cov ( ) < non ( 𝒩 ) < cof ( ) = 𝔡 < cof ( 𝒩 ) < 2 0 .

How to cite

top

Kellner, Jakob, Shelah, Saharon, and Tănasie, Anda R.. "Another ordering of the ten cardinal characteristics in Cichoń's diagram." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 61-95. <http://eudml.org/doc/294479>.

@article{Kellner2019,
abstract = {It is consistent that \[ \aleph \_1 < \{\rm add\}\{(\mathcal \{N\})\}< \{\rm add\}\{(\mathcal \{M\})\}= \mathfrak \{b\} < \{\rm cov\} \{(\mathcal \{N\})\} < \{\rm non\}\{(\mathcal \{M\})\} < \{\rm cov\}\{(\mathcal \{M\})\} = 2^\{\aleph \_0\}. \] Assuming four strongly compact cardinals, it is consistent that \begin\{align*\} \aleph \_1 &< \{\rm add\}\{(\mathcal \{N\})\} < \{\rm add\}\{(\mathcal \{M\})\} =\mathfrak \{b\} < \{\rm cov\} \{(\mathcal \{N\})\} < \{\rm non\}\{(\mathcal \{M\})\} &<\{\rm cov\}\{(\mathcal \{M\})\}< \{\rm non\}\{(\mathcal \{N\})\} < \{\rm cof\}\{(\mathcal \{M\})\}= \mathfrak \{d\} < \{\rm cof\}\{(\mathcal \{N\})\} < 2^\{\aleph \_0\}. \end\{align*\}},
author = {Kellner, Jakob, Shelah, Saharon, Tănasie, Anda R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {set theory of the reals; Cichoń's diagram; forcing; compact cardinal},
language = {eng},
number = {1},
pages = {61-95},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Another ordering of the ten cardinal characteristics in Cichoń's diagram},
url = {http://eudml.org/doc/294479},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Kellner, Jakob
AU - Shelah, Saharon
AU - Tănasie, Anda R.
TI - Another ordering of the ten cardinal characteristics in Cichoń's diagram
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 61
EP - 95
AB - It is consistent that \[ \aleph _1 < {\rm add}{(\mathcal {N})}< {\rm add}{(\mathcal {M})}= \mathfrak {b} < {\rm cov} {(\mathcal {N})} < {\rm non}{(\mathcal {M})} < {\rm cov}{(\mathcal {M})} = 2^{\aleph _0}. \] Assuming four strongly compact cardinals, it is consistent that \begin{align*} \aleph _1 &< {\rm add}{(\mathcal {N})} < {\rm add}{(\mathcal {M})} =\mathfrak {b} < {\rm cov} {(\mathcal {N})} < {\rm non}{(\mathcal {M})} &<{\rm cov}{(\mathcal {M})}< {\rm non}{(\mathcal {N})} < {\rm cof}{(\mathcal {M})}= \mathfrak {d} < {\rm cof}{(\mathcal {N})} < 2^{\aleph _0}. \end{align*}
LA - eng
KW - set theory of the reals; Cichoń's diagram; forcing; compact cardinal
UR - http://eudml.org/doc/294479
ER -

References

top
  1. Bartoszyński T., 10.4064/fm-127-3-225-239, Fund. Math. 127 (1987), no. 3, 225–239. MR0917147DOI10.4064/fm-127-3-225-239
  2. Bartoszyński T., Judah H., Set Theory, On the Structure of the Real Line, A. K. Peters, Wellesley, 1995. MR1350295
  3. Brendle J., 10.2178/jsl/1183743728, J. Symbolic Logic 56 (1991), no. 3, 795–810. MR1129144DOI10.2178/jsl/1183743728
  4. Brendle J., Mejía D. A., 10.4064/fm227-1-4, Fund. Math. 227 (2014), no. 1, 35–68. MR3247032DOI10.4064/fm227-1-4
  5. Cardona M. A., Mejía D. A., On cardinal characteristics of Yorioka ideals, available at arXiv:1703.08634 [math.LO] (2018), 35 pages. 
  6. Engelking R., Karłowicz M., 10.4064/fm-57-3-275-285, Fund. Math. 57 (1965), 275–285. MR0196693DOI10.4064/fm-57-3-275-285
  7. Goldstern M., Kellner J., Shelah S., Cichoń's maximum, available at arXiv:1708.03691 [math.LO] (2018), 21 pages. 
  8. Goldstern M., Mejía D. A., Shelah S., 10.1090/proc/13161, Proc. Amer. Math. Soc. 144 (2016), no. 9, 4025–4042. MR3513558DOI10.1090/proc/13161
  9. Horowitz H., Shelah S., Saccharinity with ccc, available at arXiv:1610.02706 [math.LO] (2016), 23 pages. 
  10. Judah H., Shelah S., 10.2307/2274464, J. Symbolic Logic 55 (1990), no. 3, 909–927. MR1071305DOI10.2307/2274464
  11. Kamburelis A., 10.1007/BF01630808, Arch. Math. Logic 29 (1989), no. 1, 21–28. MR1022984DOI10.1007/BF01630808
  12. Kellner J., Tănasia A. R., Tonti F. E., 10.1017/jsl.2018.17, J. Symb. Log. 83 (2018), no. 2, 790–803. MR3835089DOI10.1017/jsl.2018.17
  13. Mejía D. A., 10.1007/s00153-012-0315-6, Arch. Math. Logic 52 (2013), no. 3–4, 261–278. MR3047455DOI10.1007/s00153-012-0315-6
  14. Miller A. W., 10.1090/S0002-9939-1982-0671224-2, Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR0671224DOI10.1090/S0002-9939-1982-0671224-2
  15. Osuga N., Kamo S., 10.1007/s00153-013-0354-7, Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR3151397DOI10.1007/s00153-013-0354-7
  16. Shelah S., Covering of the null ideal may have countable cofinality, Fund. Math. 166 (2000), no. 1–2, 109–136. Zbl0962.03046MR1804707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.