Another ordering of the ten cardinal characteristics in Cichoń's diagram
Jakob Kellner; Saharon Shelah; Anda R. Tănasie
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 1, page 61-95
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKellner, Jakob, Shelah, Saharon, and Tănasie, Anda R.. "Another ordering of the ten cardinal characteristics in Cichoń's diagram." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 61-95. <http://eudml.org/doc/294479>.
@article{Kellner2019,
abstract = {It is consistent that \[ \aleph \_1 < \{\rm add\}\{(\mathcal \{N\})\}< \{\rm add\}\{(\mathcal \{M\})\}= \mathfrak \{b\} < \{\rm cov\} \{(\mathcal \{N\})\} < \{\rm non\}\{(\mathcal \{M\})\} < \{\rm cov\}\{(\mathcal \{M\})\} = 2^\{\aleph \_0\}. \]
Assuming four strongly compact cardinals, it is consistent that \begin\{align*\} \aleph \_1 &< \{\rm add\}\{(\mathcal \{N\})\} < \{\rm add\}\{(\mathcal \{M\})\} =\mathfrak \{b\} < \{\rm cov\} \{(\mathcal \{N\})\} < \{\rm non\}\{(\mathcal \{M\})\} &<\{\rm cov\}\{(\mathcal \{M\})\}< \{\rm non\}\{(\mathcal \{N\})\} < \{\rm cof\}\{(\mathcal \{M\})\}= \mathfrak \{d\} < \{\rm cof\}\{(\mathcal \{N\})\} < 2^\{\aleph \_0\}. \end\{align*\}},
author = {Kellner, Jakob, Shelah, Saharon, Tănasie, Anda R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {set theory of the reals; Cichoń's diagram; forcing; compact cardinal},
language = {eng},
number = {1},
pages = {61-95},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Another ordering of the ten cardinal characteristics in Cichoń's diagram},
url = {http://eudml.org/doc/294479},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Kellner, Jakob
AU - Shelah, Saharon
AU - Tănasie, Anda R.
TI - Another ordering of the ten cardinal characteristics in Cichoń's diagram
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 61
EP - 95
AB - It is consistent that \[ \aleph _1 < {\rm add}{(\mathcal {N})}< {\rm add}{(\mathcal {M})}= \mathfrak {b} < {\rm cov} {(\mathcal {N})} < {\rm non}{(\mathcal {M})} < {\rm cov}{(\mathcal {M})} = 2^{\aleph _0}. \]
Assuming four strongly compact cardinals, it is consistent that \begin{align*} \aleph _1 &< {\rm add}{(\mathcal {N})} < {\rm add}{(\mathcal {M})} =\mathfrak {b} < {\rm cov} {(\mathcal {N})} < {\rm non}{(\mathcal {M})} &<{\rm cov}{(\mathcal {M})}< {\rm non}{(\mathcal {N})} < {\rm cof}{(\mathcal {M})}= \mathfrak {d} < {\rm cof}{(\mathcal {N})} < 2^{\aleph _0}. \end{align*}
LA - eng
KW - set theory of the reals; Cichoń's diagram; forcing; compact cardinal
UR - http://eudml.org/doc/294479
ER -
References
top- Bartoszyński T., 10.4064/fm-127-3-225-239, Fund. Math. 127 (1987), no. 3, 225–239. MR0917147DOI10.4064/fm-127-3-225-239
- Bartoszyński T., Judah H., Set Theory, On the Structure of the Real Line, A. K. Peters, Wellesley, 1995. MR1350295
- Brendle J., 10.2178/jsl/1183743728, J. Symbolic Logic 56 (1991), no. 3, 795–810. MR1129144DOI10.2178/jsl/1183743728
- Brendle J., Mejía D. A., 10.4064/fm227-1-4, Fund. Math. 227 (2014), no. 1, 35–68. MR3247032DOI10.4064/fm227-1-4
- Cardona M. A., Mejía D. A., On cardinal characteristics of Yorioka ideals, available at arXiv:1703.08634 [math.LO] (2018), 35 pages.
- Engelking R., Karłowicz M., 10.4064/fm-57-3-275-285, Fund. Math. 57 (1965), 275–285. MR0196693DOI10.4064/fm-57-3-275-285
- Goldstern M., Kellner J., Shelah S., Cichoń's maximum, available at arXiv:1708.03691 [math.LO] (2018), 21 pages.
- Goldstern M., Mejía D. A., Shelah S., 10.1090/proc/13161, Proc. Amer. Math. Soc. 144 (2016), no. 9, 4025–4042. MR3513558DOI10.1090/proc/13161
- Horowitz H., Shelah S., Saccharinity with ccc, available at arXiv:1610.02706 [math.LO] (2016), 23 pages.
- Judah H., Shelah S., 10.2307/2274464, J. Symbolic Logic 55 (1990), no. 3, 909–927. MR1071305DOI10.2307/2274464
- Kamburelis A., 10.1007/BF01630808, Arch. Math. Logic 29 (1989), no. 1, 21–28. MR1022984DOI10.1007/BF01630808
- Kellner J., Tănasia A. R., Tonti F. E., 10.1017/jsl.2018.17, J. Symb. Log. 83 (2018), no. 2, 790–803. MR3835089DOI10.1017/jsl.2018.17
- Mejía D. A., 10.1007/s00153-012-0315-6, Arch. Math. Logic 52 (2013), no. 3–4, 261–278. MR3047455DOI10.1007/s00153-012-0315-6
- Miller A. W., 10.1090/S0002-9939-1982-0671224-2, Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR0671224DOI10.1090/S0002-9939-1982-0671224-2
- Osuga N., Kamo S., 10.1007/s00153-013-0354-7, Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR3151397DOI10.1007/s00153-013-0354-7
- Shelah S., Covering of the null ideal may have countable cofinality, Fund. Math. 166 (2000), no. 1–2, 109–136. Zbl0962.03046MR1804707
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.