A note on weak solutions to stochastic differential equations
Kybernetika (2018)
- Volume: 54, Issue: 5, page 888-907
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOndreját, Martin, and Seidler, Jan. "A note on weak solutions to stochastic differential equations." Kybernetika 54.5 (2018): 888-907. <http://eudml.org/doc/294488>.
@article{Ondreját2018,
abstract = {We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.},
author = {Ondreját, Martin, Seidler, Jan},
journal = {Kybernetika},
keywords = {stochastic differential equations; continuous coefficients; weak solutions},
language = {eng},
number = {5},
pages = {888-907},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A note on weak solutions to stochastic differential equations},
url = {http://eudml.org/doc/294488},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Ondreját, Martin
AU - Seidler, Jan
TI - A note on weak solutions to stochastic differential equations
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 888
EP - 907
AB - We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
LA - eng
KW - stochastic differential equations; continuous coefficients; weak solutions
UR - http://eudml.org/doc/294488
ER -
References
top- Bensoussan, A., 10.1007/bf00996149, Acta Appl. Math. 38 (1995), 267-304. MR1326637DOI10.1007/bf00996149
- Billingsley, P., 10.1002/9780470316962, Wiley, New York 1999. MR1700749DOI10.1002/9780470316962
- Bogachev, V. I., 10.1007/978-3-540-34514-5, Springer, Berlin 2007. MR2267655DOI10.1007/978-3-540-34514-5
- Brzeźniak, Z., Ondreját, M., Seidler, J., 10.1016/j.jde.2015.11.007, J. Differential Equations 260 (2016), 4157-4179. MR3437583DOI10.1016/j.jde.2015.11.007
- Cherny, A., 10.1007/978-3-540-30788-4_6, In: From Stochastic Calculus to Mathematical Finance, Springer, Berlin 2006, pp. 109-124. MR2233537DOI10.1007/978-3-540-30788-4_6
- Debussche, A., Glatt-Holtz, N., Temam, R., 10.1016/j.physd.2011.03.009, Phys. D 240 (2011), 1123-1144. MR2812364DOI10.1016/j.physd.2011.03.009
- Dudley, R. M., 10.1017/cbo9780511755347, Cambridge University Press, Cambridge 2002. Zbl1023.60001MR1932358DOI10.1017/cbo9780511755347
- Hofmanová, M., Seidler, J., 10.1080/07362994.2012.628916, Stoch. Anal. Appl. 30 (2012), 100-121. MR2870529DOI10.1080/07362994.2012.628916
- Hofmanová, M., Seidler, J., 10.1080/07362994.2013.799025, Stoch. Anal. Appl. 31 (2013), 663-670. MR3175790DOI10.1080/07362994.2013.799025
- Gyöngy, I., Krylov, N., 10.1007/bf01203833, Probab. Theory Related Fields 105 (1996), 143-158. MR1392450DOI10.1007/bf01203833
- Ikeda, N., Watanabe, S., 10.1016/s0924-6509(08)70226-5, North-Holland, Amsterdam 1981. MR0637061DOI10.1016/s0924-6509(08)70226-5
- Karatzas, I., Shreve, S. E., 10.1007/978-1-4684-0302-2, Springer, New York 1988. MR0917065DOI10.1007/978-1-4684-0302-2
- Kurtz, T. G., Protter, P. E., 10.1007/bfb0093176, In: Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 1-41. MR1431298DOI10.1007/bfb0093176
- Skorokhod, A. V., On existence and uniqueness of solutions to stochastic differential equations (in Russian)., Sibirsk. Mat. Ž. 2 (1961), 129-137. MR0132595
- Strock, D. W., Varadhan, S. R. S., Multidimensional Diffusion Processes., Springer, Berlin 1979. MR0532498
- Taheri, A., 10.1093/acprof:oso/9780198733133.001.0001, Oxford University Press, Oxford 2015. MR3410096DOI10.1093/acprof:oso/9780198733133.001.0001
- Triebel, H., 10.1016/s0924-6509(09)x7004-2, North-Holland, Amsterdam 1978. MR0503903DOI10.1016/s0924-6509(09)x7004-2
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.