Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun; Lahcen Maniar; Abdelghafour Atlas

Kybernetika (2020)

  • Volume: 56, Issue: 3, page 500-515
  • ISSN: 0023-5954

Abstract

top
We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.

How to cite

top

Oumoun, Mohamed, Maniar, Lahcen, and Atlas, Abdelghafour. "Continuous feedback stabilization for a class of affine stochastic nonlinear systems." Kybernetika 56.3 (2020): 500-515. <http://eudml.org/doc/296951>.

@article{Oumoun2020,
abstract = {We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.},
author = {Oumoun, Mohamed, Maniar, Lahcen, Atlas, Abdelghafour},
journal = {Kybernetika},
keywords = {continuous state feedback; control stochastic nonlinear systems; global asymptotic stability in probability},
language = {eng},
number = {3},
pages = {500-515},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Continuous feedback stabilization for a class of affine stochastic nonlinear systems},
url = {http://eudml.org/doc/296951},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Oumoun, Mohamed
AU - Maniar, Lahcen
AU - Atlas, Abdelghafour
TI - Continuous feedback stabilization for a class of affine stochastic nonlinear systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 500
EP - 515
AB - We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.
LA - eng
KW - continuous state feedback; control stochastic nonlinear systems; global asymptotic stability in probability
UR - http://eudml.org/doc/296951
ER -

References

top
  1. Abedi, F., Leong, W. J., Chaharborj, S. S., 10.1155/2013/560647, Math. Problems Engrg. (2013), 1-10. MR3035628DOI10.1155/2013/560647
  2. Artstein, Z., 10.1016/0362-546x(83)90049-4, Nonlinear Anal. Theory Methods Appl. 7 (1983), 1163-1173. MR0721403DOI10.1016/0362-546x(83)90049-4
  3. Chabour, R., Oumoun, M., 10.1080/07362999908809606, Stochast. Anal. Appl. 17 (1999), 359-368. MR1686995DOI10.1080/07362999908809606
  4. Daumail, L., Florchinger, P., 10.1142/s0219493702000418, Stochast. Dynamics 2 (2002), 251-263. MR1912143DOI10.1142/s0219493702000418
  5. Deng, H., Krstic, M., Williams, R. J., 10.1109/9.940927, IEEE Trans. Automat. Control 46 (2001), 1237-1253. MR1847327DOI10.1109/9.940927
  6. Florchinger, P., 10.1080/07362999308809308, Stochast. Anal. Appl. 11 (1993), 155-162. MR1214577DOI10.1080/07362999308809308
  7. Florchinger, P., 10.1080/07362994.2015.1108203, Stochast. Anal. Appl. 34 (2016), 137-146. MR3437083DOI10.1080/07362994.2015.1108203
  8. Florchinger, P., 10.14736/kyb-2018-2-0321, Kybernetika 54 (2018), 321-335. MR3807718DOI10.14736/kyb-2018-2-0321
  9. Fontbona, J., Raminez, H., Riquelme, V., Silva, F., 10.1016/j.ifacol.2017.08.2203, IFACPapersOnLine 50 (2017), 12611-12616. DOI10.1016/j.ifacol.2017.08.2203
  10. Ikeda, N., Watanabe, S., 10.1002/bimj.4710280425, Amsterdam, North-Holland 1981. MR0637061DOI10.1002/bimj.4710280425
  11. Gao, F., Wu, Y., Yu, X., 10.1080/00207721.2015.1129678, Int. J. Systems Sci. 47 (2016), 16, 3846-3856. MR3512588DOI10.1080/00207721.2015.1129678
  12. Khalil, H. K., Nonlinear Systems., Upper Saddle River, Prentice-Hall, NJ 2002. Zbl1194.93083
  13. Khasminskii, R. Z., 10.1007/978-3-642-23280-0, Sijthoff and Noordhoff International Publishers 1980. Zbl1241.60002MR0600653DOI10.1007/978-3-642-23280-0
  14. Klebaner, F. C., 10.1142/p386, Imperial College Press, London 2005. MR2160228DOI10.1142/p386
  15. Kushner, H. J., 10.1002/zamm.19680480428, Academic Press, New York 1967. MR0216894DOI10.1002/zamm.19680480428
  16. Lan, Q., Li, S., 10.1002/rnc.3758, Int. J. Robust Nonlinear Control 27 (2017), 3643-3658. MR3733629DOI10.1002/rnc.3758
  17. Lan, Q., Niu, H., Liu, Y., Xu, H., 10.14736/kyb-2017-5-0780, Kybernetika 53 (2017), 780-802. MR3750103DOI10.14736/kyb-2017-5-0780
  18. Lewis, A. L., 10.1111/rssa.12262, Finance Press, Newport Beach 2009. MR3526206DOI10.1111/rssa.12262
  19. Li, F., Liu, Y., 10.1016/j.jmaa.2013.12.021, J. Math. Anal. Appl. 413 (2014), 841-855. MR3159808DOI10.1016/j.jmaa.2013.12.021
  20. Lin, Y., Sontag, E. D., 10.1016/0167-6911(91)90111-q, Systems Control Lett. 16 (1991), 393-397. MR1112756DOI10.1016/0167-6911(91)90111-q
  21. Maniar, L., Oumoun, M., Vivalda, J. C., 10.1016/j.ejcon.2017.03.001, Europ. J Control 35 (2017), 28-33. MR3648351DOI10.1016/j.ejcon.2017.03.001
  22. Mao, X. R., Stochastic Differential Equations and Their Applications., Horwood Publishing, Chichester 1997. Zbl0892.60057MR1475218
  23. Mao, X., Truman, A., Yuan, C., 10.1155/jamsa/2006/80967, J. Appl. Math. Stochast. Anal. (2006), 1-20. MR2237177DOI10.1155/jamsa/2006/80967
  24. Ondreját, M., Seidler, J., 10.14736/kyb-2018-5-0888, Kybernetika 54 (2018), 888-907. MR3893126DOI10.14736/kyb-2018-5-0888
  25. Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. MR1014237DOI10.1016/0167-6911(89)90028-5
  26. Yang, H., Kloeden, P. E., Wu, F., 10.1080/07362994.2018.1434005, Stochast. Anal. Appl. 36 (2018), 4, 613-621. MR3854532DOI10.1080/07362994.2018.1434005
  27. Zha, W., Zhai, J., Fei, S., 10.1007/s12555-016-0023-9, Int. J. Control Automat. Systems 15 (2017), 3, 1125-1133. MR3418397DOI10.1007/s12555-016-0023-9
  28. Zhang, B. L., Han, Q. L., Zhang, X. M., 10.1007/s11071-017-3503-4, Nonlinear Dynamics 89 (2017), 755-771. DOI10.1007/s11071-017-3503-4
  29. Zhang, B. L., Han, Q. L., Zhang, X. M., 10.1016/j.jsv.2016.01.008, J. Sound Vibration 368 (2016), 1-21. DOI10.1016/j.jsv.2016.01.008
  30. Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X., 10.1109/tcst.2013.2293401, IEEE Trans. Control Systems Technol. 22 (2014), 1769-1783. DOI10.1109/tcst.2013.2293401
  31. Zhang, J., Liu, Y., 10.1007/s11768-013-2166-z, J. Control Theory Appl. 11 (2013), 343-350. MR3083980DOI10.1007/s11768-013-2166-z
  32. Zhang, X., Xie, X., 10.1080/00207179.2013.852252, Int. J. Control 87 (2014), 642-652. MR3172535DOI10.1080/00207179.2013.852252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.