Continuous feedback stabilization for a class of affine stochastic nonlinear systems
Mohamed Oumoun; Lahcen Maniar; Abdelghafour Atlas
Kybernetika (2020)
- Volume: 56, Issue: 3, page 500-515
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOumoun, Mohamed, Maniar, Lahcen, and Atlas, Abdelghafour. "Continuous feedback stabilization for a class of affine stochastic nonlinear systems." Kybernetika 56.3 (2020): 500-515. <http://eudml.org/doc/296951>.
@article{Oumoun2020,
abstract = {We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.},
author = {Oumoun, Mohamed, Maniar, Lahcen, Atlas, Abdelghafour},
journal = {Kybernetika},
keywords = {continuous state feedback; control stochastic nonlinear systems; global asymptotic stability in probability},
language = {eng},
number = {3},
pages = {500-515},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Continuous feedback stabilization for a class of affine stochastic nonlinear systems},
url = {http://eudml.org/doc/296951},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Oumoun, Mohamed
AU - Maniar, Lahcen
AU - Atlas, Abdelghafour
TI - Continuous feedback stabilization for a class of affine stochastic nonlinear systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 500
EP - 515
AB - We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods are inapplicable to a lot of systems contained in the class of stochastic systems considered in this paper.
LA - eng
KW - continuous state feedback; control stochastic nonlinear systems; global asymptotic stability in probability
UR - http://eudml.org/doc/296951
ER -
References
top- Abedi, F., Leong, W. J., Chaharborj, S. S., 10.1155/2013/560647, Math. Problems Engrg. (2013), 1-10. MR3035628DOI10.1155/2013/560647
- Artstein, Z., 10.1016/0362-546x(83)90049-4, Nonlinear Anal. Theory Methods Appl. 7 (1983), 1163-1173. MR0721403DOI10.1016/0362-546x(83)90049-4
- Chabour, R., Oumoun, M., 10.1080/07362999908809606, Stochast. Anal. Appl. 17 (1999), 359-368. MR1686995DOI10.1080/07362999908809606
- Daumail, L., Florchinger, P., 10.1142/s0219493702000418, Stochast. Dynamics 2 (2002), 251-263. MR1912143DOI10.1142/s0219493702000418
- Deng, H., Krstic, M., Williams, R. J., 10.1109/9.940927, IEEE Trans. Automat. Control 46 (2001), 1237-1253. MR1847327DOI10.1109/9.940927
- Florchinger, P., 10.1080/07362999308809308, Stochast. Anal. Appl. 11 (1993), 155-162. MR1214577DOI10.1080/07362999308809308
- Florchinger, P., 10.1080/07362994.2015.1108203, Stochast. Anal. Appl. 34 (2016), 137-146. MR3437083DOI10.1080/07362994.2015.1108203
- Florchinger, P., 10.14736/kyb-2018-2-0321, Kybernetika 54 (2018), 321-335. MR3807718DOI10.14736/kyb-2018-2-0321
- Fontbona, J., Raminez, H., Riquelme, V., Silva, F., 10.1016/j.ifacol.2017.08.2203, IFACPapersOnLine 50 (2017), 12611-12616. DOI10.1016/j.ifacol.2017.08.2203
- Ikeda, N., Watanabe, S., 10.1002/bimj.4710280425, Amsterdam, North-Holland 1981. MR0637061DOI10.1002/bimj.4710280425
- Gao, F., Wu, Y., Yu, X., 10.1080/00207721.2015.1129678, Int. J. Systems Sci. 47 (2016), 16, 3846-3856. MR3512588DOI10.1080/00207721.2015.1129678
- Khalil, H. K., Nonlinear Systems., Upper Saddle River, Prentice-Hall, NJ 2002. Zbl1194.93083
- Khasminskii, R. Z., 10.1007/978-3-642-23280-0, Sijthoff and Noordhoff International Publishers 1980. Zbl1241.60002MR0600653DOI10.1007/978-3-642-23280-0
- Klebaner, F. C., 10.1142/p386, Imperial College Press, London 2005. MR2160228DOI10.1142/p386
- Kushner, H. J., 10.1002/zamm.19680480428, Academic Press, New York 1967. MR0216894DOI10.1002/zamm.19680480428
- Lan, Q., Li, S., 10.1002/rnc.3758, Int. J. Robust Nonlinear Control 27 (2017), 3643-3658. MR3733629DOI10.1002/rnc.3758
- Lan, Q., Niu, H., Liu, Y., Xu, H., 10.14736/kyb-2017-5-0780, Kybernetika 53 (2017), 780-802. MR3750103DOI10.14736/kyb-2017-5-0780
- Lewis, A. L., 10.1111/rssa.12262, Finance Press, Newport Beach 2009. MR3526206DOI10.1111/rssa.12262
- Li, F., Liu, Y., 10.1016/j.jmaa.2013.12.021, J. Math. Anal. Appl. 413 (2014), 841-855. MR3159808DOI10.1016/j.jmaa.2013.12.021
- Lin, Y., Sontag, E. D., 10.1016/0167-6911(91)90111-q, Systems Control Lett. 16 (1991), 393-397. MR1112756DOI10.1016/0167-6911(91)90111-q
- Maniar, L., Oumoun, M., Vivalda, J. C., 10.1016/j.ejcon.2017.03.001, Europ. J Control 35 (2017), 28-33. MR3648351DOI10.1016/j.ejcon.2017.03.001
- Mao, X. R., Stochastic Differential Equations and Their Applications., Horwood Publishing, Chichester 1997. Zbl0892.60057MR1475218
- Mao, X., Truman, A., Yuan, C., 10.1155/jamsa/2006/80967, J. Appl. Math. Stochast. Anal. (2006), 1-20. MR2237177DOI10.1155/jamsa/2006/80967
- Ondreját, M., Seidler, J., 10.14736/kyb-2018-5-0888, Kybernetika 54 (2018), 888-907. MR3893126DOI10.14736/kyb-2018-5-0888
- Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. MR1014237DOI10.1016/0167-6911(89)90028-5
- Yang, H., Kloeden, P. E., Wu, F., 10.1080/07362994.2018.1434005, Stochast. Anal. Appl. 36 (2018), 4, 613-621. MR3854532DOI10.1080/07362994.2018.1434005
- Zha, W., Zhai, J., Fei, S., 10.1007/s12555-016-0023-9, Int. J. Control Automat. Systems 15 (2017), 3, 1125-1133. MR3418397DOI10.1007/s12555-016-0023-9
- Zhang, B. L., Han, Q. L., Zhang, X. M., 10.1007/s11071-017-3503-4, Nonlinear Dynamics 89 (2017), 755-771. DOI10.1007/s11071-017-3503-4
- Zhang, B. L., Han, Q. L., Zhang, X. M., 10.1016/j.jsv.2016.01.008, J. Sound Vibration 368 (2016), 1-21. DOI10.1016/j.jsv.2016.01.008
- Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X., 10.1109/tcst.2013.2293401, IEEE Trans. Control Systems Technol. 22 (2014), 1769-1783. DOI10.1109/tcst.2013.2293401
- Zhang, J., Liu, Y., 10.1007/s11768-013-2166-z, J. Control Theory Appl. 11 (2013), 343-350. MR3083980DOI10.1007/s11768-013-2166-z
- Zhang, X., Xie, X., 10.1080/00207179.2013.852252, Int. J. Control 87 (2014), 642-652. MR3172535DOI10.1080/00207179.2013.852252
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.