Real quadratic number fields with metacyclic Hilbert -class field tower
Said Essahel; Ahmed Dakkak; Ali Mouhib
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 177-190
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEssahel, Said, Dakkak, Ahmed, and Mouhib, Ali. "Real quadratic number fields with metacyclic Hilbert $2$-class field tower." Mathematica Bohemica 144.2 (2019): 177-190. <http://eudml.org/doc/294501>.
@article{Essahel2019,
abstract = {We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb \{Q\}(\sqrt\{d\})$ that have a metacyclic nonabelian Hilbert $2$-class field tower.},
author = {Essahel, Said, Dakkak, Ahmed, Mouhib, Ali},
journal = {Mathematica Bohemica},
keywords = {class field tower; class group; real quadratic number field; metacyclic group},
language = {eng},
number = {2},
pages = {177-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Real quadratic number fields with metacyclic Hilbert $2$-class field tower},
url = {http://eudml.org/doc/294501},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Essahel, Said
AU - Dakkak, Ahmed
AU - Mouhib, Ali
TI - Real quadratic number fields with metacyclic Hilbert $2$-class field tower
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 177
EP - 190
AB - We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb {Q}(\sqrt{d})$ that have a metacyclic nonabelian Hilbert $2$-class field tower.
LA - eng
KW - class field tower; class group; real quadratic number field; metacyclic group
UR - http://eudml.org/doc/294501
ER -
References
top- Azizi, A., Mouhib, A., 10.1090/S0002-9947-01-02753-2, Trans. Am. Math. Soc. 353 (2001), French 2741-2752. (2001) Zbl0986.11073MR1828471DOI10.1090/S0002-9947-01-02753-2
- Azizi, A., Mouhib, A., 10.2140/pjm.2005.218.17, Pac. J. Math. 218 French (2005), 17-36. (2005) Zbl1152.11345MR2224587DOI10.2140/pjm.2005.218.17
- Benjamin, E., Lemmermeyer, F., Snyder, C., 10.1006/jnth.1998.2291, J. Number Theory 73 (1998), 182-194. (1998) Zbl0919.11073MR1658015DOI10.1006/jnth.1998.2291
- Berkovich, Y., Janko, Z., 10.1007/s11856-009-0038-5, Isr. J. Math. 171 (2009), 29-49. (2009) Zbl1181.20017MR2520099DOI10.1007/s11856-009-0038-5
- Martinet, J., 10.1007/BF01389902, Invent. Math. 44 French (1978), 65-73. (1978) Zbl0369.12007MR0460281DOI10.1007/BF01389902
- Mouhib, A., 10.1016/j.jnt.2008.12.013, J. Number Theory 129 (2009), 1205-1211. (2009) Zbl1167.11039MR2521470DOI10.1016/j.jnt.2008.12.013
- Mouhib, A., 10.1215/ijm/1417442559, Ill. J. Math. 57 (2013), 1009-1018. (2013) Zbl1302.11090MR3285864DOI10.1215/ijm/1417442559
- Mouhib, A., 10.1007/s11139-015-9713-9, Ramanujan J. 40 (2016), 405-412. (2016) Zbl06580117MR3490564DOI10.1007/s11139-015-9713-9
- Taussky, O., 10.1112/jlms/s1-12.1.82, J. London Math. Soc. 12 (1937), 82-85. (1937) Zbl0016.20002MR1574658DOI10.1112/jlms/s1-12.1.82
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.