Maximum modulus in a bidisc of analytic functions of bounded -index and an analogue of Hayman’s theorem
Andriy Bandura; Nataliia Petrechko; Oleh Skaskiv
Mathematica Bohemica (2018)
- Volume: 143, Issue: 4, page 339-354
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBandura, Andriy, Petrechko, Nataliia, and Skaskiv, Oleh. "Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman’s theorem." Mathematica Bohemica 143.4 (2018): 339-354. <http://eudml.org/doc/294506>.
@article{Bandura2018,
abstract = {We generalize some criteria of boundedness of $\mathbf \{L\}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman’s theorem).},
author = {Bandura, Andriy, Petrechko, Nataliia, Skaskiv, Oleh},
journal = {Mathematica Bohemica},
keywords = {analytic function; bidisc; bounded $\{\mathbf \{L\}\}$-index in joint variables; maximum modulus; partial derivative; Cauchy’s integral formula},
language = {eng},
number = {4},
pages = {339-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximum modulus in a bidisc of analytic functions of bounded $\{\bf L\}$-index and an analogue of Hayman’s theorem},
url = {http://eudml.org/doc/294506},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Bandura, Andriy
AU - Petrechko, Nataliia
AU - Skaskiv, Oleh
TI - Maximum modulus in a bidisc of analytic functions of bounded ${\bf L}$-index and an analogue of Hayman’s theorem
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 4
SP - 339
EP - 354
AB - We generalize some criteria of boundedness of $\mathbf {L}$-index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of $(p+1)$th partial derivative by lower order partial derivatives (analogue of Hayman’s theorem).
LA - eng
KW - analytic function; bidisc; bounded ${\mathbf {L}}$-index in joint variables; maximum modulus; partial derivative; Cauchy’s integral formula
UR - http://eudml.org/doc/294506
ER -
References
top- Bandura, A., New criteria of boundedness of L-index in joint variables for entire functions, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 58-67 Ukrainian. (2016) Zbl06742099
- Bandura, A. I., Bordulyak, M. T., Skaskiv, O. B., 10.15330/ms.45.1.12-26, Mat. Stud. 45 (2016), 12-26. (2016) Zbl1353.30030MR3561322DOI10.15330/ms.45.1.12-26
- Bandura, A. I., Skaskiv, O. B., Entire Functions of Several Variables of Bounded Index, Chyslo, Lviv (2015). (2015) Zbl1342.32001MR3725018
- Bandura, A. I., Skaskiv, O. B., Analytic in the unit ball functions of bounded -index in direction, Avaible at https://arxiv.org/abs/1501.04166. MR3702166
- Bandura, A. I., Petrechko, N. V., Skaskiv, O. B., 10.15330/ms.46.1.72-80, Mat. Stud. 46 (2016), 72-80. (2016) Zbl1373.30043MR3649050DOI10.15330/ms.46.1.72-80
- Bordulyak, M. T., The space of entire functions in of bounded -index, Mat. Stud. 4 (1995), 53-58. (1995) Zbl1023.32500MR1692641
- Bordulyak, M. T., Sheremeta, M. M., Boundedness of the -index of an entire function of several variables, Dopov./Dokl. Akad. Nauk Ukraï ni 9 (1993), 10-13 Ukrainian. (1993) MR1300779
- Krishna, J. Gopala, Shah, S. M., Functions of bounded indices in one and several complex variables, Math. Essays dedicated to A. J. Macintyre Ohio Univ. Press, Athens, Ohio (1970), 223-235. (1970) Zbl0205.09302MR0271345
- Hayman, W. K., 10.2140/pjm.1973.44.117, Pac. J. Math. 44 (1973), 117-137. (1973) Zbl0248.30026MR0316693DOI10.2140/pjm.1973.44.117
- Kushnir, V. O., Sheremeta, M. M., Analytic functions of bounded -index, Mat. Stud. 12 (1999), 59-66. (1999) Zbl0948.30031MR1737831
- Lepson, B., Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Entire Funct. and Relat. Parts of Anal., La Jolla, Calif. 1966 Proc. Sympos. Pure Math. 11, AMS, Providence, Rhode Island (1968), 298-307. (1968) Zbl0199.12902MR0237788
- Nuray, F., Patterson, R. F., 10.4418/2015.70.2.14, Matematiche 70 (2015), 225-233. (2015) Zbl1342.32006MR3437188DOI10.4418/2015.70.2.14
- Salmassi, M., Functions of bounded indices in several variables, Indian J. Math. 31 (1989), 249-257. (1989) Zbl0699.32004MR1042643
- Sheremeta, M., Analytic Functions of Bounded Index, Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). (1999) Zbl0980.30020MR1751042
- Strochyk, S. N., Sheremeta, M. M., Analytic in the unit disc functions of bounded index, Dopov./Dokl. Akad. Nauk Ukraï ni 1 (1993), 19-22 Ukrainian. (1993) Zbl0783.30025MR1222997
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.