Inverse topology in MV-algebras
Fereshteh Forouzesh; Farhad Sajadian; Mahta Bedrood
Mathematica Bohemica (2019)
- Volume: 144, Issue: 3, page 273-285
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topForouzesh, Fereshteh, Sajadian, Farhad, and Bedrood, Mahta. "Inverse topology in MV-algebras." Mathematica Bohemica 144.3 (2019): 273-285. <http://eudml.org/doc/294509>.
@article{Forouzesh2019,
abstract = {We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely $\{\rm Min\}(A)$, with the inverse topology is a compact space, Hausdorff, $T_\{0\}$-space and $T_\{1\}$-space. Furthermore, we prove that the spectral topology on $\{\rm Min\}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on $\{\rm Min\}(A)$ is finer than the inverse topology on $\{\rm Min\}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra.},
author = {Forouzesh, Fereshteh, Sajadian, Farhad, Bedrood, Mahta},
journal = {Mathematica Bohemica},
keywords = {minimal prime; spectral topology; inverse topology; congruence},
language = {eng},
number = {3},
pages = {273-285},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse topology in MV-algebras},
url = {http://eudml.org/doc/294509},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Forouzesh, Fereshteh
AU - Sajadian, Farhad
AU - Bedrood, Mahta
TI - Inverse topology in MV-algebras
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 273
EP - 285
AB - We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely ${\rm Min}(A)$, with the inverse topology is a compact space, Hausdorff, $T_{0}$-space and $T_{1}$-space. Furthermore, we prove that the spectral topology on ${\rm Min}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on ${\rm Min}(A)$ is finer than the inverse topology on ${\rm Min}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra.
LA - eng
KW - minimal prime; spectral topology; inverse topology; congruence
UR - http://eudml.org/doc/294509
ER -
References
top- Belluce, L. P., Nola, A. Di, Sessa, S., 10.1002/malq.19940400304, Math. Log. Q. 40 (1994), 331-346. (1994) Zbl0815.06010MR1283500DOI10.1002/malq.19940400304
- Bhattacharjee, P., Drees, K. M., McGovern, W. W., 10.1016/j.topol.2011.06.015, Topology Appl. 158 (2011), 1802-1814. (2011) Zbl1235.13006MR2823692DOI10.1016/j.topol.2011.06.015
- Chang, C. C., 10.2307/1993227, Trans. Am. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302DOI10.2307/1993227
- Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D., 10.1007/978-94-015-9480-6, Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). (2000) Zbl0937.06009MR1786097DOI10.1007/978-94-015-9480-6
- Eslami, E., The prime spectrum on BL-algebras and MV-algebras, Siminar Algebra Tarbiat Moallem University (2009), 58-61 Persian. (2009)
- Forouzesh, F., Eslami, E., Saeid, A. Borumand, 10.1142/S1793005715500027, New Math. Nat. Comput. 11 (2015), 13-33. (2015) Zbl1376.06013MR3325053DOI10.1142/S1793005715500027
- Munkres, J. R., Topology, Prentice Hall, Upper Saddle River (2000). (2000) Zbl0951.54001MR3728284
- Piciu, D., Algebras of Fuzzy Logic, Editura Universitaria din Craiova, Craiova (2007), Romanian. (2007)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.