Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function

Vijayakumar S. Muni; Raju K. George

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 664-698
  • ISSN: 0023-5954

Abstract

top
In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.

How to cite

top

S. Muni, Vijayakumar, and K. George, Raju. "Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function." Kybernetika 54.4 (2018): 664-698. <http://eudml.org/doc/294522>.

@article{S2018,
abstract = {In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.},
author = {S. Muni, Vijayakumar, K. George, Raju},
journal = {Kybernetika},
keywords = {matrix Lyapunov systems; controllability; impulsive differential systems; delays},
language = {eng},
number = {4},
pages = {664-698},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function},
url = {http://eudml.org/doc/294522},
volume = {54},
year = {2018},
}

TY - JOUR
AU - S. Muni, Vijayakumar
AU - K. George, Raju
TI - Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 664
EP - 698
AB - In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.
LA - eng
KW - matrix Lyapunov systems; controllability; impulsive differential systems; delays
UR - http://eudml.org/doc/294522
ER -

References

top
  1. Balachandran, K., Somasundaram, D., Controllability of a class of nonlinear systems with distributed delays in control., Kybernetika 19 (1983), 475-482. MR0734834
  2. Balachandran, K., Somasundaram, D., , Automatica 20 (1984), 257-258. MR0739580DOI
  3. Balachandran, K., Somasundaram, D., Relative controllability of nonlinear systems with time-varying delays in control., Kybernetika 21 (1985), 65-72. MR0788670
  4. Benzaid, Z., Sznaier, M., , IEEE Trans. Automat. Control 39 (1994), 1064-1066. MR1274362DOI
  5. Bian, W.Ṁ., , Appl. Anal. 72 (1999), 57-73. MR1775435DOI
  6. Chyung, D. H., , IEEE Trans. Automat. Control 16 (1971), 493-495. MR0285288DOI
  7. Dacka, C., , IEEE Trans. Automat. Control 27 (1982), 268-270. MR0673102DOI
  8. Dubey, B., George, R. K., Controllability of semilinear matrix Lyapunov systems., EJDE 42 (2013), 1-12. MR3035241
  9. Dubey, B., George, R. K., , Appl. Math. Comput. 254 (2015), 327-339. MR3314458DOI
  10. Erneux, T., Applied Delay Differential Equations., Springer-Verlag, New York, USA 2009. MR2498700
  11. George, R. K., Nandakumaran, A. K., Arapostathis, A., , J. Math. Anal. Appl. 241 (2000), 276-283. MR1739206DOI
  12. Graham, A., Kronecker Products and Matrix Calculus: With Applications., Ellis Horwood Ltd. England 1981. MR0640865
  13. Guan, Z. H., Qian, T. H., Yu, X., , Syst. Control Lett. 47 (2002), 247-257. MR2008278DOI
  14. Guan, Z. H., Qian, T. H., Yu, X., , IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (2002), 1198-1208. MR1929297DOI
  15. Han, J., Liu, Y., Zhao, S., Yang, R., , Asian J. Control 15 (2012), 1867-1870. MR3130263DOI
  16. Klamka, J., , IEEE Trans. Automat. Control 21 (1976), 594-595. MR0411713DOI
  17. Klamka, J., , Int. J. Control 24 (1976), 869-878. MR0424300DOI
  18. Klamka, J., , Int. J. Control 26 (1977), 57-63. MR0456655DOI
  19. Klamka, J., , Int. J. Control 25 (1977), 875-883. MR0527645DOI
  20. Klamka, J., , Int. J. Control 31 (1980), 811-819. MR0573486DOI
  21. Klamka, J., , J. Math. Anal. Appl. 201 (1996), 365-374. MR1396905DOI
  22. Klamka, J., , Bull. Pol. Ac. Tech. 52 (2004), 25-30. MR0527645DOI
  23. Klamka, J., Constrained controllability of semilinear systems with delayed controls., Bull. Pol. Ac. Tech. 56 (2008), 333-337. MR2487127
  24. Klamka, J., , Nonlin. Dyn. 56 (2009), 169-177. MR2487127DOI
  25. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of impulsive differential equations., World Scientific, Singapore 1989. MR1082551
  26. Leela, S., McRae, F. A., Sivasundaram, S., , J. Math. Anal. Appl. 177 (1993), 24-30. MR1224802DOI
  27. Murty, M. S. N., Rao, B. V. Appa, Kumar, G. Suresh, , B. Korean Math. Soc. 43 (2006), 149-159. MR2204867DOI
  28. Olbrot, A. W., , IEEE Trans. Automat. Control 17 (1972), 664-666. MR0441425DOI
  29. Sakthivel, R., Mahmudov, N. I., Kim, J. H., , Rep. Math. Phys. 60 (2007), 85-96. MR2355467DOI
  30. Sebakhy, O., Bayoumi, M. M., , IEEE Trans. Automat. Control 16 (1971), 364-365. MR0411712DOI
  31. Somasundaram, D., Balachandran, K., , IEEE Trans. Automat. Control 29 (1984), 573-575. MR0745197DOI
  32. Xie, G., Wang, L., , J. Math. Anal. Appl. 304 (2005), 336-355. MR2124666DOI
  33. Zhao, S., Sun, J., , Nonlin. Anal. RWA. 10 (2009), 1370-1380. MR2502952DOI
  34. Zhu, Z. Q., Lin, Q. W., Exact controllability of semilinear systems with impulses., Bull. Math. Anal. Appl. 4 (2012), 157-167. MR2955884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.