Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function
Vijayakumar S. Muni; Raju K. George
Kybernetika (2018)
- Volume: 54, Issue: 4, page 664-698
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topS. Muni, Vijayakumar, and K. George, Raju. "Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function." Kybernetika 54.4 (2018): 664-698. <http://eudml.org/doc/294522>.
@article{S2018,
abstract = {In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.},
author = {S. Muni, Vijayakumar, K. George, Raju},
journal = {Kybernetika},
keywords = {matrix Lyapunov systems; controllability; impulsive differential systems; delays},
language = {eng},
number = {4},
pages = {664-698},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function},
url = {http://eudml.org/doc/294522},
volume = {54},
year = {2018},
}
TY - JOUR
AU - S. Muni, Vijayakumar
AU - K. George, Raju
TI - Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 664
EP - 698
AB - In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.
LA - eng
KW - matrix Lyapunov systems; controllability; impulsive differential systems; delays
UR - http://eudml.org/doc/294522
ER -
References
top- Balachandran, K., Somasundaram, D., Controllability of a class of nonlinear systems with distributed delays in control., Kybernetika 19 (1983), 475-482. MR0734834
- Balachandran, K., Somasundaram, D., , Automatica 20 (1984), 257-258. MR0739580DOI
- Balachandran, K., Somasundaram, D., Relative controllability of nonlinear systems with time-varying delays in control., Kybernetika 21 (1985), 65-72. MR0788670
- Benzaid, Z., Sznaier, M., , IEEE Trans. Automat. Control 39 (1994), 1064-1066. MR1274362DOI
- Bian, W.Ṁ., , Appl. Anal. 72 (1999), 57-73. MR1775435DOI
- Chyung, D. H., , IEEE Trans. Automat. Control 16 (1971), 493-495. MR0285288DOI
- Dacka, C., , IEEE Trans. Automat. Control 27 (1982), 268-270. MR0673102DOI
- Dubey, B., George, R. K., Controllability of semilinear matrix Lyapunov systems., EJDE 42 (2013), 1-12. MR3035241
- Dubey, B., George, R. K., , Appl. Math. Comput. 254 (2015), 327-339. MR3314458DOI
- Erneux, T., Applied Delay Differential Equations., Springer-Verlag, New York, USA 2009. MR2498700
- George, R. K., Nandakumaran, A. K., Arapostathis, A., , J. Math. Anal. Appl. 241 (2000), 276-283. MR1739206DOI
- Graham, A., Kronecker Products and Matrix Calculus: With Applications., Ellis Horwood Ltd. England 1981. MR0640865
- Guan, Z. H., Qian, T. H., Yu, X., , Syst. Control Lett. 47 (2002), 247-257. MR2008278DOI
- Guan, Z. H., Qian, T. H., Yu, X., , IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (2002), 1198-1208. MR1929297DOI
- Han, J., Liu, Y., Zhao, S., Yang, R., , Asian J. Control 15 (2012), 1867-1870. MR3130263DOI
- Klamka, J., , IEEE Trans. Automat. Control 21 (1976), 594-595. MR0411713DOI
- Klamka, J., , Int. J. Control 24 (1976), 869-878. MR0424300DOI
- Klamka, J., , Int. J. Control 26 (1977), 57-63. MR0456655DOI
- Klamka, J., , Int. J. Control 25 (1977), 875-883. MR0527645DOI
- Klamka, J., , Int. J. Control 31 (1980), 811-819. MR0573486DOI
- Klamka, J., , J. Math. Anal. Appl. 201 (1996), 365-374. MR1396905DOI
- Klamka, J., , Bull. Pol. Ac. Tech. 52 (2004), 25-30. MR0527645DOI
- Klamka, J., Constrained controllability of semilinear systems with delayed controls., Bull. Pol. Ac. Tech. 56 (2008), 333-337. MR2487127
- Klamka, J., , Nonlin. Dyn. 56 (2009), 169-177. MR2487127DOI
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of impulsive differential equations., World Scientific, Singapore 1989. MR1082551
- Leela, S., McRae, F. A., Sivasundaram, S., , J. Math. Anal. Appl. 177 (1993), 24-30. MR1224802DOI
- Murty, M. S. N., Rao, B. V. Appa, Kumar, G. Suresh, , B. Korean Math. Soc. 43 (2006), 149-159. MR2204867DOI
- Olbrot, A. W., , IEEE Trans. Automat. Control 17 (1972), 664-666. MR0441425DOI
- Sakthivel, R., Mahmudov, N. I., Kim, J. H., , Rep. Math. Phys. 60 (2007), 85-96. MR2355467DOI
- Sebakhy, O., Bayoumi, M. M., , IEEE Trans. Automat. Control 16 (1971), 364-365. MR0411712DOI
- Somasundaram, D., Balachandran, K., , IEEE Trans. Automat. Control 29 (1984), 573-575. MR0745197DOI
- Xie, G., Wang, L., , J. Math. Anal. Appl. 304 (2005), 336-355. MR2124666DOI
- Zhao, S., Sun, J., , Nonlin. Anal. RWA. 10 (2009), 1370-1380. MR2502952DOI
- Zhu, Z. Q., Lin, Q. W., Exact controllability of semilinear systems with impulses., Bull. Math. Anal. Appl. 4 (2012), 157-167. MR2955884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.