Embeddings between weighted Copson and Cesàro function spaces

Amiran Gogatishvili; Rza Mustafayev; Tuğçe Ünver

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 1105-1132
  • ISSN: 0011-4642

Abstract

top
In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.

How to cite

top

Gogatishvili, Amiran, Mustafayev, Rza, and Ünver, Tuğçe. "Embeddings between weighted Copson and Cesàro function spaces." Czechoslovak Mathematical Journal 67.4 (2017): 1105-1132. <http://eudml.org/doc/294531>.

@article{Gogatishvili2017,
abstract = {In this paper, characterizations of the embeddings between weighted Copson function spaces $\{\rm Cop\}_\{p_1,q_1\}(u_1,v_1)$ and weighted Cesàro function spaces $\{\rm Ces\}_\{p_2,q_2\}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality \[ \begin\{aligned\}d \biggl ( \int \_0^\{\infty \} &\biggl ( \int \_0^t f(\tau )^\{p\_2\}v\_2(\tau ) \{\rm d\}\tau \biggr )^\{\{q\_2/p\_2\}\} u\_2(t) \{\rm d\} t\biggr )^\{\{1/q\_2\}\}\\ & \le c \biggl ( \int \_0^\{\infty \} \biggl ( \int \_t^\{\infty \} f(\tau )^\{p\_1\} v\_1(\tau ) \{\rm d\}\tau \biggr )^\{\{q\_1/p\_1\}\} u\_1(t) \{\rm d\} t\biggr )^\{\{1/q\_1\}\}, \end\{aligned\}d \] where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.},
author = {Gogatishvili, Amiran, Mustafayev, Rza, Ünver, Tuğçe},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cesàro and Copson function spaces; embedding; iterated Hardy inequalities},
language = {eng},
number = {4},
pages = {1105-1132},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Embeddings between weighted Copson and Cesàro function spaces},
url = {http://eudml.org/doc/294531},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Gogatishvili, Amiran
AU - Mustafayev, Rza
AU - Ünver, Tuğçe
TI - Embeddings between weighted Copson and Cesàro function spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1105
EP - 1132
AB - In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality \[ \begin{aligned}d \biggl ( \int _0^{\infty } &\biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{{q_2/p_2}} u_2(t) {\rm d} t\biggr )^{{1/q_2}}\\ & \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{{q_1/p_1}} u_1(t) {\rm d} t\biggr )^{{1/q_1}}, \end{aligned}d \] where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
LA - eng
KW - Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
UR - http://eudml.org/doc/294531
ER -

References

top
  1. R. Askey, R. P. Boas, Jr., Some integrability theorems for power series with positive coefficients, Math. Essays Dedicated to A. J. Macintyre Ohio Univ. Press, Athens (1970), 23-32. (1970) Zbl0212.41401MR0277956
  2. Astashkin, S. V., 10.1070/SM2012v203n04ABEH004232, Sb. Math. 203 (2012), 514-533. English. Russian original translation from Mat. Sb. 203 2012 61-80. (2012) Zbl1253.46022MR2976287DOI10.1070/SM2012v203n04ABEH004232
  3. Astashkin, S. V., Maligranda, L., 10.1090/S0002-9939-08-09599-3, Proc. Am. Math. Soc. 136 (2008), 4289-4294. (2008) Zbl1168.46014MR2431042DOI10.1090/S0002-9939-08-09599-3
  4. Astashkin, S. V., Maligranda, L., 10.1016/S0019-3577(10)00002-9, Indag. Math., New Ser. 20 (2009), 329-379. (2009) Zbl1200.46027MR2639977DOI10.1016/S0019-3577(10)00002-9
  5. Astashkin, S. V., Maligranda, L., 10.4064/sm198-3-3, Stud. Math. 198 (2010), 235-247. (2010) Zbl1202.46031MR2650988DOI10.4064/sm198-3-3
  6. Astashkin, S. V., Maligranda, L., 10.1007/s10688-011-0007-8, Funct. Anal. Appl. 45 (2011), 64-68. English. Russian original translation from Funkts. Anal. Prilozh. 45 2011 79-83. (2011) Zbl1271.46027MR2848742DOI10.1007/s10688-011-0007-8
  7. Astashkin, S. V., Maligranda, L., 10.1016/j.indag.2013.03.001, Indag. Math., New Ser. 24 (2013), 589-592. (2013) Zbl1292.46008MR3064562DOI10.1016/j.indag.2013.03.001
  8. Astashkin, S. V., Maligranda, L., 10.4064/sm215-1-4, Stud. Math. 215 (2013), 39-69. (2013) Zbl06172508MR3071806DOI10.4064/sm215-1-4
  9. Astashkin, S. V., Maligranda, L., Interpolation of Cesàro and Copson spaces, Proc. Int. Symp. on Banach and Function Spaces IV (ISBFS 2012), Kitakyushu 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 123-133. (2014) Zbl1338.46034MR3289767
  10. Astashkin, S. V., Maligranda, L., 10.4064/bc102-0-1, Function Spaces X H. Hudzik et al. Proc. Int. Conf., Poznań 2012, Polish Academy of Sciences, Institute of Mathematics, Warszawa; Banach Center Publications 102 (2014), 13-40. (2014) Zbl1327.46028MR3330604DOI10.4064/bc102-0-1
  11. Belinskii, E. S., Liflyand, E. R., Trigub, R. M., 10.1007/BF02649131, J. Fourier Anal. Appl. 3 (1997), 103-129. (1997) Zbl0882.42002MR1438893DOI10.1007/BF02649131
  12. Bennett, G., 10.1090/memo/0576, Mem. Am. Math. Soc. 120 (1996), 130 pages. (1996) Zbl0857.26009MR1317938DOI10.1090/memo/0576
  13. R. P. Boas, Jr., 10.1007/978-3-642-87108-5, Ergebnisse der Mathematik und ihrer Grenzgebiete 38, Springer, New York (1967). (1967) Zbl0145.06804MR0219973DOI10.1007/978-3-642-87108-5
  14. R. P. Boas, Jr., 10.1007/BF02795488, J. Anal. Math. 23 (1970), 53-63. (1970) Zbl0206.06803MR0274685DOI10.1007/BF02795488
  15. Carro, M., Gogatishvili, A., Martín, J., Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Oper. Theory 59 (2008), 309-332. (2008) Zbl1150.26001MR2411048
  16. Cui, S. Chen,Y., Hudzik, H., Sims, B., 10.1007/978-94-017-1748-9_12, Handbook of Metric Fixed Point Theory W. Kirk et al. Kluwer Academic Publishers, Dordrecht (2001), 339-389. (2001) Zbl1013.46015MR1904283DOI10.1007/978-94-017-1748-9_12
  17. Cui, Y., Hudzik, H., Some geometric properties related to fixed point theory in Cesàro spaces, Collect. Math. 50 (1999), 277-288. (1999) Zbl0955.46007MR1744077
  18. Cui, Y., Hudzik, H., 10.1016/S0362-546X(01)00389-3, Nonlinear Anal., Theory Methods Appl. 47 (2001), 2695-2702. (2001) Zbl1042.46505MR1972393DOI10.1016/S0362-546X(01)00389-3
  19. Cui, Y., Hudzik, H., Li, Y., On the García-Falset coefficient in some Banach sequence spaces, Function Spaces. Proc. Int. Conf. (Poznań 1998) H. Hudzik et al. Lect. Notes Pure Appl. Math. 213, Marcel Dekker, New York (2000), 141-148. (2000) Zbl0962.46011MR1772119
  20. Cui, Y., Meng, C.-H., Płuciennik, R., 10.1007/s100120070003, Southeast Asian Bull. Math. 24 (2000), 201-210. (2000) Zbl0956.46003MR1810056DOI10.1007/s100120070003
  21. Cui, Y., Płuciennik, R., Local uniform nonsquareness in Cesàro sequence spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 47-58. (1997) Zbl0898.46006MR1608225
  22. Evans, W. D., Gogatishvili, A., Opic, B., 10.7153/mia-11-03, Math. Inequal. Appl. 11 (2008), 43-74. (2008) Zbl1136.26004MR2376257DOI10.7153/mia-11-03
  23. Gilbert, J. E., 10.1007/BF02384812, Ark. Mat. 10 (1972), 235-249. (1972) Zbl0264.46027MR0324393DOI10.1007/BF02384812
  24. Gogatishvili, A., Mustafayev, R. Ch., Iterated Hardy-type inequalities involving suprema, Math. Inequal. Appl. 20 (2017), 901-927. (2017) MR3711402
  25. Gogatishvili, A., Mustafayev, R. Ch., dx.doi.org/10.7153/mia-20-45, Math. Inequal. Appl. 20 (2017), 683-728. (2017) MR3653914DOIdx.doi.org/10.7153/mia-20-45
  26. Gogatishvili, A., Mustafayev, R. Ch., Persson, L.-E., 10.1155/2012/734194, J. Funct. Spaces Appl. 2012 (2012), Article ID 734194, 30 pages. (2012) Zbl1260.26023MR3000818DOI10.1155/2012/734194
  27. Gogatishvili, A., Opic, B., Pick, L., Weighted inequalities for Hardy-type operators involving suprema, Collect. Math. 57 (2006), 227-255. (2006) Zbl1116.47041MR2264321
  28. Gogatishvili, A., Persson, L.-E., Stepanov, V. D., Wall, P., 10.1002/mana.201200118, Math. Nachr. 287 (2014), 242-253. (2014) Zbl1298.26052MR3163577DOI10.1002/mana.201200118
  29. Grosse-Erdmann, K.-G., 10.1007/BFb0093486, Lecture Notes in Mathematics 1679, Springer, Berlin (1998). (1998) Zbl0888.26014MR1611898DOI10.1007/BFb0093486
  30. Hassard, B. D., Hussein, D. A., On Cesàro function spaces, Tamkang J. Math. 4 (1973), 19-25. (1973) Zbl0284.46023MR0333700
  31. Jagers, A. A., A note on Cesàro sequence spaces, Nieuw Arch. Wiskd., III. Ser. 22 (1974), 113-124. (1974) Zbl0286.46017MR0348444
  32. Johnson, R., 10.1112/plms/s3-29.1.127, Proc. Lond. Math. Soc., III. Ser. 29 (1974), 127-141. (1974) Zbl0295.46051MR0355578DOI10.1112/plms/s3-29.1.127
  33. Kamińska, A., Kubiak, D., 10.1016/j.na.2011.11.019, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2760-2773. (2012) Zbl1245.46024MR2878472DOI10.1016/j.na.2011.11.019
  34. Kufner, A., Maligranda, L., Persson, L.-E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelský Servis, Plzeň (2007). (2007) Zbl1213.42001MR2351524
  35. Kufner, A., Persson, L.-E., 10.1142/5129, World Scientific Publishing, Singapore (2003). (2003) Zbl1065.26018MR1982932DOI10.1142/5129
  36. Mustafayev, R., Ünver, T., 10.7153/mia-18-101, Math. Inequal. Appl. 18 (2015), 1295-1311. (2015) Zbl1331.26032MR3414598DOI10.7153/mia-18-101
  37. Opic, B., Kufner, A., Hardy-Type Inequalities, Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, New York (1990). (1990) Zbl0698.26007MR1069756
  38. Programma van Jaarlijkse Prijsvragen (Annual Problem Section), Nieuw Arch. Wiskd. 16 (1968), 47-51. (1968) 
  39. Shiue, J.-S., A note on Cesàro function space, Tamkang J. Math. 1 (1970), 91-95. (1970) Zbl0215.19601MR0276751
  40. Sy, P. W., Zhang, W. Y., Lee, P. Y., The dual of Cesàro function spaces, Glas. Mat., III Ser. 22(42) (1987), 103-112. (1987) Zbl0647.46033MR0940098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.