Embeddings between weighted Copson and Cesàro function spaces
Amiran Gogatishvili; Rza Mustafayev; Tuğçe Ünver
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1105-1132
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGogatishvili, Amiran, Mustafayev, Rza, and Ünver, Tuğçe. "Embeddings between weighted Copson and Cesàro function spaces." Czechoslovak Mathematical Journal 67.4 (2017): 1105-1132. <http://eudml.org/doc/294531>.
@article{Gogatishvili2017,
abstract = {In this paper, characterizations of the embeddings between weighted Copson function spaces $\{\rm Cop\}_\{p_1,q_1\}(u_1,v_1)$ and weighted Cesàro function spaces $\{\rm Ces\}_\{p_2,q_2\}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality \[ \begin\{aligned\}d \biggl ( \int \_0^\{\infty \} &\biggl ( \int \_0^t f(\tau )^\{p\_2\}v\_2(\tau ) \{\rm d\}\tau \biggr )^\{\{q\_2/p\_2\}\} u\_2(t) \{\rm d\} t\biggr )^\{\{1/q\_2\}\}\\ & \le c \biggl ( \int \_0^\{\infty \} \biggl ( \int \_t^\{\infty \} f(\tau )^\{p\_1\} v\_1(\tau ) \{\rm d\}\tau \biggr )^\{\{q\_1/p\_1\}\} u\_1(t) \{\rm d\} t\biggr )^\{\{1/q\_1\}\}, \end\{aligned\}d \]
where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.},
author = {Gogatishvili, Amiran, Mustafayev, Rza, Ünver, Tuğçe},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cesàro and Copson function spaces; embedding; iterated Hardy inequalities},
language = {eng},
number = {4},
pages = {1105-1132},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Embeddings between weighted Copson and Cesàro function spaces},
url = {http://eudml.org/doc/294531},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Gogatishvili, Amiran
AU - Mustafayev, Rza
AU - Ünver, Tuğçe
TI - Embeddings between weighted Copson and Cesàro function spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1105
EP - 1132
AB - In this paper, characterizations of the embeddings between weighted Copson function spaces ${\rm Cop}_{p_1,q_1}(u_1,v_1)$ and weighted Cesàro function spaces ${\rm Ces}_{p_2,q_2}(u_2,v_2)$ are given. In particular, two-sided estimates of the optimal constant $c$ in the inequality \[ \begin{aligned}d \biggl ( \int _0^{\infty } &\biggl ( \int _0^t f(\tau )^{p_2}v_2(\tau ) {\rm d}\tau \biggr )^{{q_2/p_2}} u_2(t) {\rm d} t\biggr )^{{1/q_2}}\\ & \le c \biggl ( \int _0^{\infty } \biggl ( \int _t^{\infty } f(\tau )^{p_1} v_1(\tau ) {\rm d}\tau \biggr )^{{q_1/p_1}} u_1(t) {\rm d} t\biggr )^{{1/q_1}}, \end{aligned}d \]
where $p_1,p_2,q_1,q_2 \in (0,\infty )$, $p_2 \le q_2$ and $u_1$, $u_2$, $v_1$, $v_2$ are weights on $(0,\infty )$, are obtained. The most innovative part consists of the fact that possibly different parameters $p_1$ and $p_2$ and possibly different inner weights $v_1$ and $v_2$ are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
LA - eng
KW - Cesàro and Copson function spaces; embedding; iterated Hardy inequalities
UR - http://eudml.org/doc/294531
ER -
References
top- R. Askey, R. P. Boas, Jr., Some integrability theorems for power series with positive coefficients, Math. Essays Dedicated to A. J. Macintyre Ohio Univ. Press, Athens (1970), 23-32. (1970) Zbl0212.41401MR0277956
- Astashkin, S. V., 10.1070/SM2012v203n04ABEH004232, Sb. Math. 203 (2012), 514-533. English. Russian original translation from Mat. Sb. 203 2012 61-80. (2012) Zbl1253.46022MR2976287DOI10.1070/SM2012v203n04ABEH004232
- Astashkin, S. V., Maligranda, L., 10.1090/S0002-9939-08-09599-3, Proc. Am. Math. Soc. 136 (2008), 4289-4294. (2008) Zbl1168.46014MR2431042DOI10.1090/S0002-9939-08-09599-3
- Astashkin, S. V., Maligranda, L., 10.1016/S0019-3577(10)00002-9, Indag. Math., New Ser. 20 (2009), 329-379. (2009) Zbl1200.46027MR2639977DOI10.1016/S0019-3577(10)00002-9
- Astashkin, S. V., Maligranda, L., 10.4064/sm198-3-3, Stud. Math. 198 (2010), 235-247. (2010) Zbl1202.46031MR2650988DOI10.4064/sm198-3-3
- Astashkin, S. V., Maligranda, L., 10.1007/s10688-011-0007-8, Funct. Anal. Appl. 45 (2011), 64-68. English. Russian original translation from Funkts. Anal. Prilozh. 45 2011 79-83. (2011) Zbl1271.46027MR2848742DOI10.1007/s10688-011-0007-8
- Astashkin, S. V., Maligranda, L., 10.1016/j.indag.2013.03.001, Indag. Math., New Ser. 24 (2013), 589-592. (2013) Zbl1292.46008MR3064562DOI10.1016/j.indag.2013.03.001
- Astashkin, S. V., Maligranda, L., 10.4064/sm215-1-4, Stud. Math. 215 (2013), 39-69. (2013) Zbl06172508MR3071806DOI10.4064/sm215-1-4
- Astashkin, S. V., Maligranda, L., Interpolation of Cesàro and Copson spaces, Proc. Int. Symp. on Banach and Function Spaces IV (ISBFS 2012), Kitakyushu 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 123-133. (2014) Zbl1338.46034MR3289767
- Astashkin, S. V., Maligranda, L., 10.4064/bc102-0-1, Function Spaces X H. Hudzik et al. Proc. Int. Conf., Poznań 2012, Polish Academy of Sciences, Institute of Mathematics, Warszawa; Banach Center Publications 102 (2014), 13-40. (2014) Zbl1327.46028MR3330604DOI10.4064/bc102-0-1
- Belinskii, E. S., Liflyand, E. R., Trigub, R. M., 10.1007/BF02649131, J. Fourier Anal. Appl. 3 (1997), 103-129. (1997) Zbl0882.42002MR1438893DOI10.1007/BF02649131
- Bennett, G., 10.1090/memo/0576, Mem. Am. Math. Soc. 120 (1996), 130 pages. (1996) Zbl0857.26009MR1317938DOI10.1090/memo/0576
- R. P. Boas, Jr., 10.1007/978-3-642-87108-5, Ergebnisse der Mathematik und ihrer Grenzgebiete 38, Springer, New York (1967). (1967) Zbl0145.06804MR0219973DOI10.1007/978-3-642-87108-5
- R. P. Boas, Jr., 10.1007/BF02795488, J. Anal. Math. 23 (1970), 53-63. (1970) Zbl0206.06803MR0274685DOI10.1007/BF02795488
- Carro, M., Gogatishvili, A., Martín, J., Pick, L., Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Oper. Theory 59 (2008), 309-332. (2008) Zbl1150.26001MR2411048
- Cui, S. Chen,Y., Hudzik, H., Sims, B., 10.1007/978-94-017-1748-9_12, Handbook of Metric Fixed Point Theory W. Kirk et al. Kluwer Academic Publishers, Dordrecht (2001), 339-389. (2001) Zbl1013.46015MR1904283DOI10.1007/978-94-017-1748-9_12
- Cui, Y., Hudzik, H., Some geometric properties related to fixed point theory in Cesàro spaces, Collect. Math. 50 (1999), 277-288. (1999) Zbl0955.46007MR1744077
- Cui, Y., Hudzik, H., 10.1016/S0362-546X(01)00389-3, Nonlinear Anal., Theory Methods Appl. 47 (2001), 2695-2702. (2001) Zbl1042.46505MR1972393DOI10.1016/S0362-546X(01)00389-3
- Cui, Y., Hudzik, H., Li, Y., On the García-Falset coefficient in some Banach sequence spaces, Function Spaces. Proc. Int. Conf. (Poznań 1998) H. Hudzik et al. Lect. Notes Pure Appl. Math. 213, Marcel Dekker, New York (2000), 141-148. (2000) Zbl0962.46011MR1772119
- Cui, Y., Meng, C.-H., Płuciennik, R., 10.1007/s100120070003, Southeast Asian Bull. Math. 24 (2000), 201-210. (2000) Zbl0956.46003MR1810056DOI10.1007/s100120070003
- Cui, Y., Płuciennik, R., Local uniform nonsquareness in Cesàro sequence spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 47-58. (1997) Zbl0898.46006MR1608225
- Evans, W. D., Gogatishvili, A., Opic, B., 10.7153/mia-11-03, Math. Inequal. Appl. 11 (2008), 43-74. (2008) Zbl1136.26004MR2376257DOI10.7153/mia-11-03
- Gilbert, J. E., 10.1007/BF02384812, Ark. Mat. 10 (1972), 235-249. (1972) Zbl0264.46027MR0324393DOI10.1007/BF02384812
- Gogatishvili, A., Mustafayev, R. Ch., Iterated Hardy-type inequalities involving suprema, Math. Inequal. Appl. 20 (2017), 901-927. (2017) MR3711402
- Gogatishvili, A., Mustafayev, R. Ch., dx.doi.org/10.7153/mia-20-45, Math. Inequal. Appl. 20 (2017), 683-728. (2017) MR3653914DOIdx.doi.org/10.7153/mia-20-45
- Gogatishvili, A., Mustafayev, R. Ch., Persson, L.-E., 10.1155/2012/734194, J. Funct. Spaces Appl. 2012 (2012), Article ID 734194, 30 pages. (2012) Zbl1260.26023MR3000818DOI10.1155/2012/734194
- Gogatishvili, A., Opic, B., Pick, L., Weighted inequalities for Hardy-type operators involving suprema, Collect. Math. 57 (2006), 227-255. (2006) Zbl1116.47041MR2264321
- Gogatishvili, A., Persson, L.-E., Stepanov, V. D., Wall, P., 10.1002/mana.201200118, Math. Nachr. 287 (2014), 242-253. (2014) Zbl1298.26052MR3163577DOI10.1002/mana.201200118
- Grosse-Erdmann, K.-G., 10.1007/BFb0093486, Lecture Notes in Mathematics 1679, Springer, Berlin (1998). (1998) Zbl0888.26014MR1611898DOI10.1007/BFb0093486
- Hassard, B. D., Hussein, D. A., On Cesàro function spaces, Tamkang J. Math. 4 (1973), 19-25. (1973) Zbl0284.46023MR0333700
- Jagers, A. A., A note on Cesàro sequence spaces, Nieuw Arch. Wiskd., III. Ser. 22 (1974), 113-124. (1974) Zbl0286.46017MR0348444
- Johnson, R., 10.1112/plms/s3-29.1.127, Proc. Lond. Math. Soc., III. Ser. 29 (1974), 127-141. (1974) Zbl0295.46051MR0355578DOI10.1112/plms/s3-29.1.127
- Kamińska, A., Kubiak, D., 10.1016/j.na.2011.11.019, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2760-2773. (2012) Zbl1245.46024MR2878472DOI10.1016/j.na.2011.11.019
- Kufner, A., Maligranda, L., Persson, L.-E., The Hardy Inequality. About Its History and Some Related Results, Vydavatelský Servis, Plzeň (2007). (2007) Zbl1213.42001MR2351524
- Kufner, A., Persson, L.-E., 10.1142/5129, World Scientific Publishing, Singapore (2003). (2003) Zbl1065.26018MR1982932DOI10.1142/5129
- Mustafayev, R., Ünver, T., 10.7153/mia-18-101, Math. Inequal. Appl. 18 (2015), 1295-1311. (2015) Zbl1331.26032MR3414598DOI10.7153/mia-18-101
- Opic, B., Kufner, A., Hardy-Type Inequalities, Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, New York (1990). (1990) Zbl0698.26007MR1069756
- Programma van Jaarlijkse Prijsvragen (Annual Problem Section), Nieuw Arch. Wiskd. 16 (1968), 47-51. (1968)
- Shiue, J.-S., A note on Cesàro function space, Tamkang J. Math. 1 (1970), 91-95. (1970) Zbl0215.19601MR0276751
- Sy, P. W., Zhang, W. Y., Lee, P. Y., The dual of Cesàro function spaces, Glas. Mat., III Ser. 22(42) (1987), 103-112. (1987) Zbl0647.46033MR0940098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.