Displaying similar documents to “Embeddings between weighted Copson and Cesàro function spaces”

A weighted inequality for the Hardy operator involving suprema

Pavla Hofmanová (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u be a weight on ( 0 , ) . Assume that u is continuous on ( 0 , ) . Let the operator S u be given at measurable non-negative function ϕ on ( 0 , ) by S u ϕ ( t ) = sup 0 < τ t u ( τ ) ϕ ( τ ) . We characterize weights v , w on ( 0 , ) for which there exists a positive constant C such that the inequality 0 [ S u ϕ ( t ) ] q w ( t ) d t 1 q 0 [ ϕ ( t ) ] p v ( t ) d t 1 p holds for every 0 < p , q < . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

A Hardy type inequality for W 0 m , 1 ( Ω ) functions

Hernán Castro, Juan Dávila, Hui Wang (2013)

Journal of the European Mathematical Society

Similarity:

We consider functions u W 0 m , 1 ( Ω ) , where Ω N is a smooth bounded domain, and m 2 is an integer. For all j 0 , 1 k m - 1 , such that 1 j + k m , we prove that i u ( x ) d ( x ) m - j - k W 0 k , 1 ( Ω ) with k ( i u ( x ) d ( x ) m - j - k ) L 1 ( Ω ) C u W m , 1 ( Ω ) , where d is a smooth positive function which coincides with dist ( x , Ω ) near Ω , and l denotes any partial differential operator of order l .

Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

Hongbin Wang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω L s ( S n - 1 ) for s 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μ Ω and b is defined by [ b , μ Ω ] ( f ) ( x ) = ( 0 | x - y | t Ω ( x - y ) | x - y | n - 1 [ b ( x ) - b ( y ) ] f ( y ) d y | 2 d t t 3 1 / 2 . In this paper, the author proves the ( L p ( · ) ( n ) , L p ( · ) ( n ) ) -boundedness of the Marcinkiewicz integral operator μ Ω and its commutator [ b , μ Ω ] when p ( · ) satisfies some conditions. Moreover, the author obtains the corresponding result about μ Ω and [ b , μ Ω ] on Herz spaces with variable exponent.

Controlling products of currents by higher powers of plurisubharmonic functions

Ahmad K. Al Abdulaali, Hassine El Mir (2020)

Czechoslovak Mathematical Journal

Similarity:

We discuss the existence of the current g k T , k for positive and closed currents T and unbounded plurisubharmonic functions g . Furthermore, a new type of weighted Lelong number is introduced under the name of weight k Lelong number.

On square functions associated to sectorial operators

Christian Le Merdy (2004)

Bulletin de la Société Mathématique de France

Similarity:

We give new results on square functions x F = 0 F ( t A ) x 2 d t t 1 / 2 p associated to a sectorial operator A on L p for 1 &lt; p &lt; . Under the assumption that A is actually R -sectorial, we prove equivalences of the form K - 1 x G x F K x G for suitable functions F , G . We also show that A has a bounded H functional calculus with respect to . F . Then we apply our results to the study of conditions under which we have an estimate ( 0 | C e - t A ( x ) | 2 d t ) 1 / 2 q M x p , when - A generates a bounded semigroup e - t A on L p and C : D ( A ) L q is a linear mapping.

New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces

Xin-Cui Guo, Ze-Hua Zhou (2015)

Czechoslovak Mathematical Journal

Similarity:

Let u be a holomorphic function and ϕ a holomorphic self-map of the open unit disk 𝔻 in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators u C ϕ from Zygmund type spaces to Bloch type spaces in 𝔻 in terms of u , ϕ , their derivatives, and ϕ n , the n -th power of ϕ . Moreover, we obtain some similar estimates for the essential norms of the operators u C ϕ , from which sufficient and necessary conditions of compactness of u C ϕ follows immediately. ...

The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu, Minghua Yang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

On the topology of polynomials with bounded integer coefficients

De-Jun Feng (2016)

Journal of the European Mathematical Society

Similarity:

For a real number q > 1 and a positive integer m , let Y m ( q ) : = i = 0 n ϵ i q i : ϵ i 0 , ± 1 , ... , ± m , n = 0 , 1 , ... . In this paper, we show that Y m ( q ) is dense in if and only if q < m + 1 and q is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].

The boundedness of two classes of integral operators

Xin Wang, Ming-Sheng Liu (2021)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to characterize the L p - L q boundedness of two classes of integral operators from L p ( 𝒰 , d V α ) to L q ( 𝒰 , d V β ) in terms of the parameters a , b , c , p , q and α , β , where 𝒰 is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Yu-long Deng, Zhi-tian Chen, Shun-chao Long (2021)

Czechoslovak Mathematical Journal

Similarity:

Let - ( n + 1 ) < m - ( n + 1 ) ( 1 - ρ ) and let T a ρ , δ m be pseudo-differential operators with symbols a ( x , ξ ) n × n , where 0 < ρ 1 , 0 δ < 1 and δ ρ . Let μ , λ be weights in Muckenhoupt classes A p , ν = ( μ λ - 1 ) 1 / p for some 1 < p < . We establish a two-weight inequality for commutators generated by pseudo-differential operators T a with weighted BMO functions b BMO ν , namely, the commutator [ b , T a ] is bounded from L p ( μ ) into L p ( λ ) . Furthermore, the range of m can be extended to the whole m - ( n + 1 ) ( 1 - ρ ) .

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

Similarity:

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of...

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is...

Convexities of Gaussian integral means and weighted integral means for analytic functions

Haiying Li, Taotao Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We first show that the Gaussian integral means of f : (with respect to the area measure e - α | z | 2 d A ( z ) ) is a convex function of r on ( 0 , ) when α 0 . We then prove that the weighted integral means A α , β ( f , r ) and L α , β ( f , r ) of the mixed area and the mixed length of f ( r 𝔻 ) and f ( r 𝔻 ) , respectively, also have the property of convexity in the case of α 0 . Finally, we show with examples that the range α 0 is the best possible.