Pointwise Fourier inversion of distributions on spheres
Francisco Javier González Vieli
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 1059-1070
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGonzález Vieli, Francisco Javier. "Pointwise Fourier inversion of distributions on spheres." Czechoslovak Mathematical Journal 67.4 (2017): 1059-1070. <http://eudml.org/doc/294533>.
@article{GonzálezVieli2017,
abstract = {Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi $ of the sphere and we show that if $T$ has the value $\tau $ at $\xi $, then the Fourier-Laplace series of $T$ at $\xi $ is Abel-summable to $\tau $.},
author = {González Vieli, Francisco Javier},
journal = {Czechoslovak Mathematical Journal},
keywords = {distribution; sphere; Fourier-Laplace series; Abel summability},
language = {eng},
number = {4},
pages = {1059-1070},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pointwise Fourier inversion of distributions on spheres},
url = {http://eudml.org/doc/294533},
volume = {67},
year = {2017},
}
TY - JOUR
AU - González Vieli, Francisco Javier
TI - Pointwise Fourier inversion of distributions on spheres
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 1059
EP - 1070
AB - Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi $ of the sphere and we show that if $T$ has the value $\tau $ at $\xi $, then the Fourier-Laplace series of $T$ at $\xi $ is Abel-summable to $\tau $.
LA - eng
KW - distribution; sphere; Fourier-Laplace series; Abel summability
UR - http://eudml.org/doc/294533
ER -
References
top- Axler, S., Bourdon, P., Ramey, W., 10.1007/b97238, Graduate Texts in Mathematics 137, Springer, New York (2001). (2001) Zbl0959.31001MR1805196DOI10.1007/b97238
- Estrada, R., Kanwal, R. P., 10.1016/0022-247X(82)90102-0, J. Math. Anal. Appl. 89 (1982), 262-289. (1982) Zbl0511.31008MR0672200DOI10.1016/0022-247X(82)90102-0
- Vieli, F. J. González, 10.4134/JKMS.2004.41.4.755, J. Korean Math. Soc. 41 (2004), 755-772. (2004) Zbl1066.46031MR2068151DOI10.4134/JKMS.2004.41.4.755
- Groemer, H., 10.1017/CBO9780511530005, Encyclopedia of Mathematics and Its Applications 61, Cambridge University Press, Cambridge (1996). (1996) Zbl0877.52002MR1412143DOI10.1017/CBO9780511530005
- Kostadinova, S., Vindas, J., 10.1007/s10440-014-9959-z, Acta Appl. Math. 138 (2015), 115-134. (2015) Zbl1322.42045MR3365583DOI10.1007/s10440-014-9959-z
- Łojasiewicz, S., 10.4064/sm-17-1-1-64, Stud. Math. 17 (1958), 1-64 French. (1958) Zbl0086.09501MR0107167DOI10.4064/sm-17-1-1-64
- Stein, E. M., Weiss, G., 10.1515/9781400883899, Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972DOI10.1515/9781400883899
- Vindas, J., Estrada, R., 10.1007/s00041-006-6015-z, J. Fourier Anal. Appl. 13 (2007), 551-576. (2007) Zbl1138.46030MR2355012DOI10.1007/s00041-006-6015-z
- Walter, G., 10.4064/sm-26-2-143-154, Stud. Math. 26 (1966), 143-154. (1966) Zbl0144.37401MR0190624DOI10.4064/sm-26-2-143-154
- Walter, G. G., Shen, X., Wavelets and Other Orthogonal Systems, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton (2001). (2001) Zbl1005.42018MR1887929
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.