On the negative dependence in Hilbert spaces with applications
Nguyen Thi Thanh Hien; Le Van Thanh; Vo Thi Hong Van
Applications of Mathematics (2019)
- Volume: 64, Issue: 1, page 45-59
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHien, Nguyen Thi Thanh, Thanh, Le Van, and Van, Vo Thi Hong. "On the negative dependence in Hilbert spaces with applications." Applications of Mathematics 64.1 (2019): 45-59. <http://eudml.org/doc/294534>.
@article{Hien2019,
abstract = {This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.},
author = {Hien, Nguyen Thi Thanh, Thanh, Le Van, Van, Vo Thi Hong},
journal = {Applications of Mathematics},
keywords = {negative dependence; pairwise negative dependence; Hilbert space; law of large numbers},
language = {eng},
number = {1},
pages = {45-59},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the negative dependence in Hilbert spaces with applications},
url = {http://eudml.org/doc/294534},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Hien, Nguyen Thi Thanh
AU - Thanh, Le Van
AU - Van, Vo Thi Hong
TI - On the negative dependence in Hilbert spaces with applications
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 45
EP - 59
AB - This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.
LA - eng
KW - negative dependence; pairwise negative dependence; Hilbert space; law of large numbers
UR - http://eudml.org/doc/294534
ER -
References
top- Block, H. W., Savits, T. H., Shaked, M., 10.1214/aop/1176993784, Ann. Probab. 10 (1982), 765-772. (1982) Zbl0501.62037MR0659545DOI10.1214/aop/1176993784
- Borcea, J., Brändén, P., Liggett, T. M., 10.1090/S0894-0347-08-00618-8, J. Am. Math. Soc. 22 (2009), 521-567. (2009) Zbl1206.62096MR2476782DOI10.1090/S0894-0347-08-00618-8
- Burton, R. M., Dabrowski, A. R., Dehling, H., 10.1214/aop/1176994374, Ann. Probab. 9 (1981), 671-675. (1981) Zbl0465.60009MR0876052DOI10.1214/aop/1176994374
- Chen, P., Sung, S. H., 10.1007/s10474-015-0559-9, Acta Math. Hung. 148 (2016), 83-95. (2016) Zbl1374.60040MR3439284DOI10.1007/s10474-015-0559-9
- Csörgő, S., Tandori, K., Totik, V., 10.1007/BF01956779, Acta Math. Hung. 42 (1983), 319-330. (1983) Zbl0534.60028MR0722846DOI10.1007/BF01956779
- Dabrowski, A. R., Dehling, H., 10.1016/0304-4149(88)90089-0, Stochastic Processes Appl. 30 (1988), 277-289. (1988) Zbl0665.60027MR0978359DOI10.1016/0304-4149(88)90089-0
- Ebrahimi, N., Ghosh, M., 10.1080/03610928108828041, Commun. Stat., Theory Methods A10 (1981), 307-337. (1981) Zbl0506.62034MR0612400DOI10.1080/03610928108828041
- Etemadi, N., 10.1007/BF01013465, Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 119-122. (1981) Zbl0438.60027MR0606010DOI10.1007/BF01013465
- Hájek, J., Rényi, A., 10.1007/BF02024392, Acta Math. Acad. Sci. Hung. 6 (1955), 281-283. (1955) Zbl0067.10701MR0076207DOI10.1007/BF02024392
- Hien, N. T. T., Thanh, L. V., 10.1016/j.spl.2015.08.030, Stat. Probab. Lett. 107 (2015), 236-245. (2015) Zbl1329.60029MR3412782DOI10.1016/j.spl.2015.08.030
- Hu, T.-C., Sung, S. H., Volodin, A., 10.1007/s10474-016-0650-x, Acta Math. Hung. 150 (2016), 412-422. (2016) Zbl06842519MR3568100DOI10.1007/s10474-016-0650-x
- Huan, N. V., Quang, N. V., Thuan, N. T., 10.1007/s10747-014-0424-2, Acta Math. Hung. 144 (2014), 132-149. (2014) Zbl1349.60046MR3267175DOI10.1007/s10747-014-0424-2
- Ko, M.-H., 10.1186/s13660-018-1671-5, J. Inequal. Appl. (2018), Paper No. 80, 9 pages. (2018) MR3797137DOI10.1186/s13660-018-1671-5
- Ko, M.-H., Kim, T.-S., Han, K.-H., 10.1007/s10959-008-0144-z, J. Theor. Probab. 22 (2009), 506-513. (2009) Zbl1166.60021MR2501332DOI10.1007/s10959-008-0144-z
- Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat. 37 (1966), 1137-1153. (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
- Li, D., Rosalsky, A., Volodin, A. I., On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math., Acad. Sin. (N.S.) 1 (2006), 281-305. (2006) Zbl1102.60026MR2230590
- Li, R., Yang, W., 10.1016/j.jmaa.2008.02.053, J. Math. Anal. Appl. 344 (2008), 741-747. (2008) Zbl1141.60012MR2426304DOI10.1016/j.jmaa.2008.02.053
- Matuł{a}, P., 10.1016/0167-7152(92)90191-7, Stat. Probab. Lett. 15 (1992), 209-213. (1992) Zbl0925.60024MR1190256DOI10.1016/0167-7152(92)90191-7
- Miao, Y., Hájek-Rényi inequality for dependent random variables in Hilbert space and applications, Rev. Unión Mat. Argent. 53 (2012), 101-112. (2012) Zbl1255.60035MR2987160
- Móricz, F., 10.2307/2046676, Proc. Am. Math. Soc. 101 (1987), 709-715. (1987) Zbl0632.60025MR0911038DOI10.2307/2046676
- Móricz, F., Su, K.-L., Taylor, R. L., 10.1007/BF01874465, Acta Math. Hung. 65 (1994), 1-16. (1994) Zbl0806.60002MR1275656DOI10.1007/BF01874465
- Móricz, F., Taylor, R. L., 10.1002/mana.19891410116, Math. Nachr. 141 (1989), 145-152. (1989) Zbl0674.60006MR1014423DOI10.1002/mana.19891410116
- Patterson, R. F., Taylor, R. L., 10.1016/S0362-546X(97)00279-4, Nonlinear Anal., Theory Methods Appl. 30 (1997), 4229-4235. (1997) Zbl0901.60016MR1603567DOI10.1016/S0362-546X(97)00279-4
- Pemantle, R., 10.1063/1.533200, J. Math. Phys. 41 (2000), 1371-1390. (2000) Zbl1052.62518MR1757964DOI10.1063/1.533200
- Rosalsky, A., Thanh, L. V., On the strong law of large numbers for sequences of blockwise independent and blockwise -orthogonal random elements in Rademacher type Banach spaces, Probab. Math. Stat. 27 (2007), 205-222. (2007) Zbl1148.60018MR2445993
- Rosalsky, A., Thanh, L. V., 10.1007/s10114-012-0378-7, Acta Math. Sin., Engl. Ser. 28 (2012), 1385-1400. (2012) Zbl1271.60012MR2928485DOI10.1007/s10114-012-0378-7
- Thanh, L. V., 10.1007/s10474-012-0275-7, Acta Math. Hung. 139 (2013), 276-285. (2013) Zbl1299.60042MR3044151DOI10.1007/s10474-012-0275-7
- Wu, Y., Rosalsky, A., 10.3336/gm.50.1.15, Glas. Mat., III. Ser. 50 (2015), 245-259. (2015) Zbl1323.60053MR3361275DOI10.3336/gm.50.1.15
- Zhang, L.-X., 10.1016/S0304-4149(01)00107-7, Stochastic Processes Appl. 95 (2001), 311-328. (2001) Zbl1059.60042MR1854030DOI10.1016/S0304-4149(01)00107-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.