Support vector machine skin lesion classification in Clifford algebra subspaces

Mutlu Akar; Nikolay Metodiev Sirakov

Applications of Mathematics (2019)

  • Volume: 64, Issue: 5, page 581-598
  • ISSN: 0862-7940

Abstract

top
The present study develops the Clifford algebra Cl 5 , 0 within a dermatological task to diagnose skin melanoma using images of skin lesions, which are modeled here by means of 5D lesion feature vectors (LFVs). The LFV is a numerical approximation of the most used clinical rule for melanoma diagnosis - ABCD. To generate the Cl 5 , 0 we develop a new formula that uses the entries of a 5D vector to calculate the entries of a 32D multivector. This vector provides a natural mapping of the original 5D vector onto the 2-, 3-, 4-vector Cl 5 , 0 subspaces. We use a sample set of 112 5D LFVs and apply the new formula to calculate 112 32D multivectors in the Cl 5 , 0 . Next we map the 5D LFVs onto the 2-, 3-, 4-vector subspaces of the Cl 5 , 0 . In every subspace we apply a binary support vector machine to classify the mapped 112 LFVs. With the obtained results we calculate six metrics and evaluate the effectiveness of the diagnosis in every subspace. At the end of the paper we compare the classification results, obtained in every subspace, with the results obtained by the four diagnosing rules most used in clinical practice and contemporary machine learning methods. This way we reveal the potential of using Clifford algebras in the analysis and classification of medical images.

How to cite

top

Akar, Mutlu, and Sirakov, Nikolay Metodiev. "Support vector machine skin lesion classification in Clifford algebra subspaces." Applications of Mathematics 64.5 (2019): 581-598. <http://eudml.org/doc/294546>.

@article{Akar2019,
abstract = {The present study develops the Clifford algebra $\{\rm Cl\}_\{5,0\}$ within a dermatological task to diagnose skin melanoma using images of skin lesions, which are modeled here by means of 5D lesion feature vectors (LFVs). The LFV is a numerical approximation of the most used clinical rule for melanoma diagnosis - ABCD. To generate the $\{\rm Cl\}_\{5,0\}$ we develop a new formula that uses the entries of a 5D vector to calculate the entries of a 32D multivector. This vector provides a natural mapping of the original 5D vector onto the 2-, 3-, 4-vector $\{\rm Cl\}_\{5,0\}$ subspaces. We use a sample set of 112 5D LFVs and apply the new formula to calculate 112 32D multivectors in the $\{\rm Cl\}_\{5,0\}$. Next we map the 5D LFVs onto the 2-, 3-, 4-vector subspaces of the $\{\rm Cl\}_\{5,0\}$. In every subspace we apply a binary support vector machine to classify the mapped 112 LFVs. With the obtained results we calculate six metrics and evaluate the effectiveness of the diagnosis in every subspace. At the end of the paper we compare the classification results, obtained in every subspace, with the results obtained by the four diagnosing rules most used in clinical practice and contemporary machine learning methods. This way we reveal the potential of using Clifford algebras in the analysis and classification of medical images.},
author = {Akar, Mutlu, Sirakov, Nikolay Metodiev},
journal = {Applications of Mathematics},
keywords = {Clifford algebra; multivector; subspace; classification; skin lesion},
language = {eng},
number = {5},
pages = {581-598},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Support vector machine skin lesion classification in Clifford algebra subspaces},
url = {http://eudml.org/doc/294546},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Akar, Mutlu
AU - Sirakov, Nikolay Metodiev
TI - Support vector machine skin lesion classification in Clifford algebra subspaces
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 5
SP - 581
EP - 598
AB - The present study develops the Clifford algebra ${\rm Cl}_{5,0}$ within a dermatological task to diagnose skin melanoma using images of skin lesions, which are modeled here by means of 5D lesion feature vectors (LFVs). The LFV is a numerical approximation of the most used clinical rule for melanoma diagnosis - ABCD. To generate the ${\rm Cl}_{5,0}$ we develop a new formula that uses the entries of a 5D vector to calculate the entries of a 32D multivector. This vector provides a natural mapping of the original 5D vector onto the 2-, 3-, 4-vector ${\rm Cl}_{5,0}$ subspaces. We use a sample set of 112 5D LFVs and apply the new formula to calculate 112 32D multivectors in the ${\rm Cl}_{5,0}$. Next we map the 5D LFVs onto the 2-, 3-, 4-vector subspaces of the ${\rm Cl}_{5,0}$. In every subspace we apply a binary support vector machine to classify the mapped 112 LFVs. With the obtained results we calculate six metrics and evaluate the effectiveness of the diagnosis in every subspace. At the end of the paper we compare the classification results, obtained in every subspace, with the results obtained by the four diagnosing rules most used in clinical practice and contemporary machine learning methods. This way we reveal the potential of using Clifford algebras in the analysis and classification of medical images.
LA - eng
KW - Clifford algebra; multivector; subspace; classification; skin lesion
UR - http://eudml.org/doc/294546
ER -

References

top
  1. Agresti, A., Coull, B. A., 10.2307/2685469, Am. Stat. 52 (1998), 119-126. (1998) MR1628435DOI10.2307/2685469
  2. Society, American Cancer, Cancer Facts & Figures, American Cancer Society, Atlanta (2010), Available at https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2010.html. (2010) 
  3. Aragón, J. L., Aragon-Camarasa, G., Aragón-González, G., Rodríguez-Andrade, M. A., Clifford algebra with mathematica, Available at https://arxiv.org/abs/0810.2412 (2018), 10 pages. (2018) 
  4. Argenziano, G., Soyer, H. P., Giorgi, V. De, Piccolo, D., Dermoscopy: A Tutorial, Edra Medical Publishing & New Media, Milan (2000). (2000) 
  5. Barata, C., Celebi, M. E., Marques, J. S., 10.1109/jbhi.2018.2845939, IEEE J. Biomedical and Health Inf. 23 (2018), 1096-1109. (2018) DOI10.1109/jbhi.2018.2845939
  6. Bayro-Corrochano, E. J., Arana-Daniel, N., 10.1109/tnn.2010.2060352, IEEE Trans. Neural Networks 21 (2010), 1731-1746. (2010) DOI10.1109/tnn.2010.2060352
  7. N. C. F. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, A. Halpern, Skin lesion analysis toward melanoma detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC), Available at https://arxiv.org/abs/1710.05006 (2017), 5 pages. (2017) 
  8. Dolianitis, C., Kelly, J., Wolfe, R., Simpson, P., 10.1001/archderm.141.8.1008, Arch. of Dermatology 141 (2005), 1008-1014. (2005) DOI10.1001/archderm.141.8.1008
  9. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., Thrun, S., 10.1038/nature21056, Nature 542 (2017), 115-118. (2017) DOI10.1038/nature21056
  10. Guy, G. P., Ekwueme, D. U., Tangka, F. K., Richardson, L. C., 10.1016/j.amepre.2012.07.031, Am. J. Prev. Med. 43 (2012), 537-545. (2012) DOI10.1016/j.amepre.2012.07.031
  11. Harangi, B., 10.1016/j.jbi.2018.08.006, J. Biomedical Inf. 86 (2018), 25-32. (2018) DOI10.1016/j.jbi.2018.08.006
  12. Jafari, M. H., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Ward, K., Najarian, K., 10.1109/EMBC.2016.7590959, Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE IEEE, New York (2016), 1357-1360. (2016) DOI10.1109/EMBC.2016.7590959
  13. Korotkov, K., Automatic Change Detection in Multiple Skin Lesions, Ph.D. Thesis, Universitat de Girona, Girona (2014). (2014) 
  14. Lounesto, P., 10.1017/CBO9780511526022, London Mathematical Society Lecture Note Series 286, Cambridge University Press, Cambridge (2001). (2001) Zbl0973.15022MR1834977DOI10.1017/CBO9780511526022
  15. Masood, A., Al-Jumaily, A. A., 10.1155/2013/323268, Int. J. Biomedical Imaging 2013 (2013), Article ID 323268, 22 pages. (2013) DOI10.1155/2013/323268
  16. Mete, M., Sirakov, N. M., 10.1016/j.compmedimag.2012.06.002, Computerized Medical Imaging and Graphics 36 (2012), 572-579. (2012) DOI10.1016/j.compmedimag.2012.06.002
  17. Mete, M., Sirakov, N. M., Griffin, J., Menter, A., 10.1109/icip.2016.7532993, IEEE International Conference on Image Processing (ICIP) IEEE, New York (2016), 3414-3418. (2016) DOI10.1109/icip.2016.7532993
  18. Mishra, B., Wilson, P. R., Wilcock, R., 10.3390/electronics4010094, Electronics 4 (2015), 94-117. (2015) DOI10.3390/electronics4010094
  19. F. Nachbar, W. Stolz, T. Merkle, A. B. Cognetta, T. Vogt, M. Landthaler, P. Bilek, O. Braun Falco, G. Plewig, 10.1016/S0190-9622(94)70061-3, J. Am. Acad. Dermatol. 30 (1994), 551-559. (1994) DOI10.1016/S0190-9622(94)70061-3
  20. Roy, S., Mitra, A., Setua, S. K., 10.1109/isms.2014.66, 5th International Conference on Intelligent Systems, Modelling and Simulation IEEE, Langkawi (2014), 27-29. (2014) DOI10.1109/isms.2014.66
  21. Schott, R., Staples, G. S., 10.1007/s00006-008-0143-2, Adv. Appl. Clifford Algebr. 20 (2010), 121-140. (2010) Zbl1191.68335MR2601894DOI10.1007/s00006-008-0143-2
  22. Singh, N., Gupta, S. K., 10.1111/srt.12622, Skin Res. Technol. 25 (2019), 129-141. (2019) DOI10.1111/srt.12622
  23. Sirakov, N. M., Mete, M., Selvaggi, R., Luong, M., 10.1109/ICHI.2015.53, International Conference on Healthcare Informatics IEEE, Dallas 374-379 (2015). (2015) DOI10.1109/ICHI.2015.53
  24. Sultana, N. N., Mandal, B., Puhan, N. B., 10.1049/iet-cvi.2018.5238, IET Computer Vision 12 (2018), 1096-1104. (2018) DOI10.1049/iet-cvi.2018.5238
  25. J. Vaz, Jr., R. da Rocha, Jr., 10.1093/acprof:oso/9780198782926.001.0001, Oxford University Press, Oxford (2016). (2016) Zbl1347.15001MR3931311DOI10.1093/acprof:oso/9780198782926.001.0001
  26. Wahba, M. A., Ashour, A. S., Guo, Y., Napoleon, S. A., Elnaby, M. M. Abd, 10.1016/j.cmpb.2018.08.009, Computer Methods and Programs in Biomedicine 165 (2018), 163-174. (2018) DOI10.1016/j.cmpb.2018.08.009
  27. Yu, Z., Jiang, X., Zhou, F., Qin, J., Ni, D., Chen, S., Lei, B., Wang, T., 10.1109/TBME.2018.2866166, IEEE Trans. Biomed. Eng. 66 (2019), 1006-1016. (2019) DOI10.1109/TBME.2018.2866166

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.