Displaying similar documents to “Support vector machine skin lesion classification in Clifford algebra subspaces”

R z -supercontinuous functions

Davinder Singh, Brij Kishore Tyagi, Jeetendra Aggarwal, Jogendra K. Kohli (2015)

Mathematica Bohemica

Similarity:

A new class of functions called “ R z -supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of R z -supercontinuous functions properly includes the class of R cl -supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of cl -supercontinuous ( clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983),...

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Tamás Erdélyi (2003)

Studia Mathematica

Similarity:

Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose ( λ j ) j = 1 is a sequence of distinct positive numbers. Then s p a n 1 , x λ , x λ , . . . is dense in C[0,1] if and only if j = 1 ( λ j ) / ( λ j ² + 1 ) = . Moreover, if j = 1 ( λ j ) / ( λ j ² + 1 ) < , then every function from the C[0,1] closure of s p a n 1 , x λ , x λ , . . . can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an...

The Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Studia Mathematica

Similarity:

Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form C Λ ( G ) or L ¹ Λ ( G ) and which quotients of the form C ( G ) / C Λ ( G ) or L ¹ ( G ) / L ¹ Λ ( G ) have the Daugavet property. We show that C Λ ( G ) is a rich subspace of C(G) if and only if Γ Λ - 1 is a semi-Riesz set. If L ¹ Λ ( G ) is a rich subspace of L¹(G), then C Λ ( G ) is a rich subspace of C(G) as well. Concerning quotients, we prove that C ( G ) / C Λ ( G ) has the Daugavet property if Λ is a Rosenthal set, and that L ¹ Λ ( G ) is a poor subspace of L¹(G)...

Structure properties of D-R spaces

Hartmut von Trotha

Similarity:

CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.....................................................................................................

Three-space problems for the approximation property

A. Szankowski (2009)

Journal of the European Mathematical Society

Similarity:

It is shown that there is a subspace Z q of q for 1 < q < 2 which is isomorphic to q such that q / Z q does not have the approximation property. On the other hand, for 2 < p < there is a subspace Y p of p such that Y p does not have the approximation property (AP) but the quotient space p / Y p is isomorphic to p . The result is obtained by defining random “Enflo-Davie spaces” Y p which with full probability fail AP for all 2 < p and have AP for all 1 p 2 . For 1 < p 2 , Y p are isomorphic to p .

Some theorems of Korovkin type

Tomoko Hachiro, Takateru Okayasu (2003)

Studia Mathematica

Similarity:

We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C ( X ) ) of all complex-valued (resp., real-valued) continuous functions on X, S ⊂ M a complex (resp., real) function space on X, ϕₙ a sequence of unital linear contractions from M into C(Y) (resp., C ( Y ) ), and ϕ a linear isometry from M into C(Y) (resp., C ( Y ) ). We show, under the assumption that Π N Π T , where Π N is...

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying...

On n -thin dense sets in powers of topological spaces

Adam Bartoš (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A subset of a product of topological spaces is called n -thin if every its two distinct points differ in at least n coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable T 3 space X without isolated points such that X n contains an n -thin dense subset, but X n + 1 does not contain any n -thin dense subset. We also observe that part of the construction can be carried out under MA.

A note on spaces with countable extent

Yan-Kui Song (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = S t ( A , 𝒰 ) . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

Cambrian fans

Nathan Reading, David E. Speyer (2009)

Journal of the European Mathematical Society

Similarity:

For a finite Coxeter group W and a Coxeter element c of W ; the c -Cambrian fan is a coarsening of the fan defined by the reflecting hyperplanes of W . Its maximal cones are naturally indexed by the c -sortable elements of W . The main result of this paper is that the known bijection cl c between c -sortable elements and c -clusters induces a combinatorial isomorphism of fans. In particular, the c -Cambrian fan is combinatorially isomorphic to the normal fan of the generalized associahedron for...

Coloring Cantor sets and resolvability of pseudocompact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let us denote by Φ ( λ , μ ) the statement that 𝔹 ( λ ) = D ( λ ) ω , i.e. the Baire space of weight λ , has a coloring with μ colors such that every homeomorphic copy of the Cantor set in 𝔹 ( λ ) picks up all the μ colors. We call a space X π -regular if it is Hausdorff and for every nonempty open set U in X there is a nonempty open set V such that V ¯ U . We recall that a space X is called feebly compact if every locally finite collection of open sets in X is finite. A Tychonov space is pseudocompact if and...

Finite-dimensional maps and dendrites with dense sets of end points

Hisao Kato, Eiichi Matsuhashi (2006)

Colloquium Mathematicae

Similarity:

The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space C ( X , I p + 2 k + 1 - i ) such that the diagonal product f × g : X Y × I p + 2 k + 1 - i is an (i+1)-to-1 map is a dense G δ -subset of C ( X , I p + 2 k + 1 - i ) . In this paper, we prove that if f: X → Y is as above and D j (j = 1,..., k) are superdendrites, then the set of maps h in C ( X , j = 1 k D j × I p + 1 - i ) such that f × h : X Y × ( j = 1 k D j × I p + 1 - i ) is (i+1)-to-1 is a dense G δ -subset of C ( X , j = 1 k D j × I p + 1 - i ) for each 0 ≤ i ≤ p.