Geometric properties of Wright function

Sudhananda Maharana; Jugal K. Prajapat; Deepak Bansal

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 1, page 99-111
  • ISSN: 0862-7959

Abstract

top
In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.

How to cite

top

Maharana, Sudhananda, Prajapat, Jugal K., and Bansal, Deepak. "Geometric properties of Wright function." Mathematica Bohemica 143.1 (2018): 99-111. <http://eudml.org/doc/294550>.

@article{Maharana2018,
abstract = {In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.},
author = {Maharana, Sudhananda, Prajapat, Jugal K., Bansal, Deepak},
journal = {Mathematica Bohemica},
keywords = {analytic function; univalent function; starlike function; strongly starlike function; convex function; close-to-convex function; Wright function; Bessel function; subordination of functions},
language = {eng},
number = {1},
pages = {99-111},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geometric properties of Wright function},
url = {http://eudml.org/doc/294550},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Maharana, Sudhananda
AU - Prajapat, Jugal K.
AU - Bansal, Deepak
TI - Geometric properties of Wright function
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 1
SP - 99
EP - 111
AB - In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.
LA - eng
KW - analytic function; univalent function; starlike function; strongly starlike function; convex function; close-to-convex function; Wright function; Bessel function; subordination of functions
UR - http://eudml.org/doc/294550
ER -

References

top
  1. Bansal, D., Prajapat, J. K., 10.1080/17476933.2015.1079628, Complex Var. Elliptic Equ. 61 (2016), 338-350. (2016) Zbl1336.33039MR3454110DOI10.1080/17476933.2015.1079628
  2. Baricz, Á., Kupán, P. A., Szász, R., 10.1090/S0002-9939-2014-11902-2, Proc. Am. Math. Soc. 142 (2014), 2019-2025. (2014) Zbl1291.30062MR3182021DOI10.1090/S0002-9939-2014-11902-2
  3. Baricz, Á., Ponnusamy, S., 10.1080/10652460903516736, Integral Transforms Spec. Funct. 21 (2010), 641-653. (2010) Zbl1205.30010MR2743533DOI10.1080/10652460903516736
  4. Baricz, Á., Szász, R., 10.1142/S0219530514500316, Anal. Appl. Singap. 12 (2014), 485-509. (2014) Zbl1302.33003MR3252850DOI10.1142/S0219530514500316
  5. Brickman, L., MacGregor, T. H., Wilken, D. R., 10.2307/1995600, Trans. Am. Math. Soc. 156 (1971), 91-107. (1971) Zbl0227.30013MR0274734DOI10.2307/1995600
  6. Branges, L. de, 10.1007/BF02392821, Acta Math. 154 (1985), 137-152. (1985) Zbl0573.30014MR0772434DOI10.1007/BF02392821
  7. Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). (1983) Zbl0514.30001MR0708494
  8. Fejér, L., Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge, Acta Litt. Sci. Szeged 8 (1937), 89-115. (1937) Zbl0016.10803
  9. Goodman, A. W., Univalent Functions. Vol. I, Mariner Publishing, Tampa (1983). (1983) Zbl1041.30500MR0704183
  10. Gorenflo, R., Luchko, Y., Mainardi, F., Analytic properties and applications of the Wright functions, Fract. Cal. Appl. Anal. 2 (1999), 383-414. (1999) Zbl1027.33006MR1752379
  11. Hallenbeck, D. J., Ruscheweyh, S., 10.2307/2040127, Proc. Am. Math. Soc. 52 (1975), 191-195. (1975) Zbl0311.30010MR0374403DOI10.2307/2040127
  12. Kiryakova, V., Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series 301. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1994). (1994) Zbl0882.26003MR1265940
  13. Mainardi, F., 10.1016/0893-9659(96)00089-4, Appl. Math. Lett. 9 (1996), 23-28. (1996) Zbl0879.35036MR1419811DOI10.1016/0893-9659(96)00089-4
  14. Miller, S. S., Mocanu, P. T., 10.2307/2048075, Proc. Am. Math. Soc. 110 (1990), 333-342. (1990) Zbl0707.30012MR1017006DOI10.2307/2048075
  15. Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Pure and Applied Mathematics 225. A Series of Monographs and Textbooks. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285
  16. Mondal, S. R., Swaminathan, A., Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 179-194. (2012) Zbl1232.30013MR2865131
  17. Mustafa, N., 10.3390/mca21020014, Math. Comput. Appl. 21 (2016), Paper No. 14, 10 pages. (2016) MR3520354DOI10.3390/mca21020014
  18. Ozaki, S., On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45-87. (1941) Zbl0063.06075MR0048577
  19. Piejko, K., Sokół, J., 10.1016/j.aml.2011.09.034, Appl. Math. Lett. 25 (2012), 448-453. (2012) Zbl1250.30016MR2856004DOI10.1016/j.aml.2011.09.034
  20. Ponnusamy, S., 10.1080/17476939608814876, Complex Variables, Theory Appl. 29 (1996), 83-96. (1996) Zbl0845.30036MR1382005DOI10.1080/17476939608814876
  21. Ponnusamy, S., 10.1016/S0377-0427(97)00221-5, J. Comput. Appl. Math. 88 (1998), 327-337. (1998) Zbl0901.30007MR1613250DOI10.1016/S0377-0427(97)00221-5
  22. Prajapat, J. K., 10.1016/j.aml.2011.06.014, Appl. Math. Lett. 24 (2011), 2133-2139. (2011) Zbl1231.33004MR2826152DOI10.1016/j.aml.2011.06.014
  23. Prajapat, J. K., 10.1080/10652469.2014.983502, Integral Transforms Spec. Funct. 26 (2015), 203-212. (2015) Zbl1306.30006MR3293039DOI10.1080/10652469.2014.983502
  24. Ruscheweyh, S., Singh, V., 10.1016/0022-247X(86)90329-X, J. Math. Anal. Appl. 113 (1986), 1-11. (1986) Zbl0598.30021MR0826655DOI10.1016/0022-247X(86)90329-X
  25. Szász, R., Kupán, P. A., About the univalence of the Bessel functions, Stud. Univ. Babeş-Bolyai Math. 54 (2009), 127-132. (2009) Zbl1240.30078MR2486953
  26. Tuneski, N., On some simple sufficient conditions for univalence, Math. Bohem. 126 (2001), 229-236. (2001) Zbl0986.30012MR1826485
  27. Wilf, H. S., 10.2307/2034857, Proc. Am. Math. Soc. 12 (1961), 689-693. (1961) Zbl0100.07201MR0125214DOI10.2307/2034857
  28. Wright, E. M., 10.1112/jlms/s1-8.1.71, J. London Math. Soc. 8 (1933), 71-80. (1933) Zbl0006.19704MR1574787DOI10.1112/jlms/s1-8.1.71
  29. Yağmur, N., 10.4134/BKMS.2015.52.3.1035, Bull. Korean Math. Soc. 52 (2015), 1035-1046. (2015) Zbl1318.30038MR3353311DOI10.4134/BKMS.2015.52.3.1035
  30. Ya{ğ}mur, N., Orhan, H., 10.1155/2013/954513, Abstr. Appl. Anal. 2013 (2013), Article ID 954513, 6 pages. (2013) Zbl1272.30033MR3035216DOI10.1155/2013/954513
  31. Yağmur, N., Orhan, H., 10.1080/17476933.2013.799148, Complex Var. Elliptic Equ. 59 (2014), 929-936. (2014) Zbl1290.30066MR3195920DOI10.1080/17476933.2013.799148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.