A novel algorithm for the modeling of complex processes

José de Jesús Rubio; Edwin Lughofer; Angelov Plamen; Juan Francisco Novoa; Jesús A. Meda-Campaña

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 79-95
  • ISSN: 0023-5954

Abstract

top
In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.

How to cite

top

Rubio, José de Jesús, et al. "A novel algorithm for the modeling of complex processes." Kybernetika 54.1 (2018): 79-95. <http://eudml.org/doc/294558>.

@article{Rubio2018,
abstract = {In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.},
author = {Rubio, José de Jesús, Lughofer, Edwin, Plamen, Angelov, Novoa, Juan Francisco, Meda-Campaña, Jesús A.},
journal = {Kybernetika},
keywords = {recursive least square; Kalman filter; modeling; complex processes},
language = {eng},
number = {1},
pages = {79-95},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A novel algorithm for the modeling of complex processes},
url = {http://eudml.org/doc/294558},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Rubio, José de Jesús
AU - Lughofer, Edwin
AU - Plamen, Angelov
AU - Novoa, Juan Francisco
AU - Meda-Campaña, Jesús A.
TI - A novel algorithm for the modeling of complex processes
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 79
EP - 95
AB - In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.
LA - eng
KW - recursive least square; Kalman filter; modeling; complex processes
UR - http://eudml.org/doc/294558
ER -

References

top
  1. Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F., 10.1155/2013/197690, Math. Problems Engrg. (2013), 9 pages. DOI10.1155/2013/197690
  2. Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., A wind speed neural model with particle swarm optimization Kalman learning., In: International Joint Conference on Neural Networks 2006, pp. 1993-2000. 
  3. Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F., A wind speed neural model with particle swarm optimization Kalman learning., In: World Automation Congress 2012, pp. 1-5. MR3063031
  4. Astrom, K. J., Wittenmark, B., Adaptive Control. Second edition., Addison-Wesley Longman Publishing Co., Inc., Boston (1994). 
  5. Bifet, A., Gavalda, R., 10.1007/11893318, In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg. DOI10.1007/11893318
  6. Čelikovský, S., Topological equivalence and topological linearization of controlled dynamical systems., Kybernetika 31 (1995), 141-150. MR1334506
  7. Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J., 10.1016/j.fss.2016.12.017, Fuzzy Sets and Systems 337 (2018), 52-73. MR3766926DOI10.1016/j.fss.2016.12.017
  8. Chen, G., Xie, Q., Shieh, L. S., 10.1016/s0020-0255(98)10002-6, J. Inform. Sci. 109 (1998), 197-209. MR1634612DOI10.1016/s0020-0255(98)10002-6
  9. Coelho, J. K., Pena, M.Ḋ., Romero, O. J., 10.1109/tla.2016.7483518, IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807. DOI10.1109/tla.2016.7483518
  10. Deng, Z., Wang, X., Hong, Y., 10.1049/iet-cta.2016.0795, IET Control Theory Appl. 11 (2017), 2, 282-290. MR3675134DOI10.1049/iet-cta.2016.0795
  11. Dolinský, K., Čelikovský, S., 10.1109/acc.2012.6315366, In: American Control Conference 2012, pp. 4789-4794. DOI10.1109/acc.2012.6315366
  12. Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P., 10.1109/7.976975, IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418. DOI10.1109/7.976975
  13. E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y., 10.1016/j.neucom.2014.12.059, Neurocomputing 164 (2015), 307-317. DOI10.1016/j.neucom.2014.12.059
  14. Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H., 10.1109/tcst.2013.2280920, IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628. DOI10.1109/tcst.2013.2280920
  15. Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H., 10.1016/j.automatica.2013.06.001, Automatica 49 (2013), 2874-2880. MR3084477DOI10.1016/j.automatica.2013.06.001
  16. Kalman, R. E., 10.1115/1.3662552, Trans. ASME, J. Basic Engrg. 82 (1960), 35-45. DOI10.1115/1.3662552
  17. Khemchandani, R., Pal, A., Chandra, S., 10.1007/s00521-016-2468-4, Neural Computing Appl. 29 (2018), 553-563. DOI10.1007/s00521-016-2468-4
  18. Lizasoain, I., Gomez, M., 10.1016/j.fss.2017.01.006, Fuzzy Sets and Systems 317 (2017), 133-150. DOI10.1016/j.fss.2017.01.006
  19. Liu, F., Zhao, R., Tan, T., Zhang, Q., 10.1002/asjc.1253, Asian J. Control 18 (2016), 5, 1679-1687. MR3564277DOI10.1002/asjc.1253
  20. Ljung, L., System Identification: Theory for the User., Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999. 
  21. Lughofer, E., Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications., Springer, Berlin, Heidelberg 2011. 
  22. Lughofer, E., 10.1007/s12530-012-9060-7, Evolving Systems 3 (2012), 4, 251-271. DOI10.1007/s12530-012-9060-7
  23. Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T., 10.1016/j.ins.2016.03.034, Inform. Sci. 355-356 (2016), 127-151. DOI10.1016/j.ins.2016.03.034
  24. Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T., 10.1007/s00521-016-2492-4, Neural Computing Appl. 29 (2018), 873-888. DOI10.1007/s00521-016-2492-4
  25. Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A., 10.1371/journal.pone.0167568, Plos One (2016), 1-16. DOI10.1371/journal.pone.0167568
  26. Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P., 10.1016/j.neucom.2015.06.022, Neurocomputing 171 (2016), 89-105. DOI10.1016/j.neucom.2015.06.022
  27. Rehák, B., Čelikovský, S., 10.1016/j.automatica.2007.10.015, Automatica 44 (2008), 1358-1365. MR2531803DOI10.1016/j.automatica.2007.10.015
  28. Rubio, J. J., 10.1016/j.neunet.2016.02.006, Neural Networks 78 (2016), 88-96. DOI10.1016/j.neunet.2016.02.006
  29. Rubio, J. J., 10.1016/j.jfranklin.2017.08.038, J. Franklin Inst. 354 (2017), 7444-7462. DOI10.1016/j.jfranklin.2017.08.038
  30. Rubio, J. J., 10.1109/tfuzz.2009.2029569, IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309. DOI10.1109/tfuzz.2009.2029569
  31. Sanchez, E. N., Alanis, A. Y., Rico, J., 10.1109/ijcnn.2004.1381093, In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775. DOI10.1109/ijcnn.2004.1381093
  32. Sun, X. M., Wang, X. F., Hong, Y., Xia, W., 10.1109/tie.2016.2637888, IEEE Trans. Industr. Electron. 64 (2017), 3260-3267. DOI10.1109/tie.2016.2637888
  33. Weng, Z., Chen, G., Shieh, L. S., Larsson, J., 10.1016/s0020-0255(00)00064-5, Inform. Sci. 129 (2000), 197-210. MR1802157DOI10.1016/s0020-0255(00)00064-5
  34. Wu, H., Deng, Y., 10.1016/j.fss.2015.09.012, Fuzzy Sets and Systems 301 (2016), 19-36. MR3537844DOI10.1016/j.fss.2015.09.012
  35. Wu, H., Deng, Y., 10.1109/tfuzz.2017.2670605, IEEE Trans. Fuzzy Systems 99 (2017), 1-1. DOI10.1109/tfuzz.2017.2670605
  36. Wu, H., Chen, Y., Bu, T., Deng, Y., 10.1016/j.fss.2017.02.008, Fuzzy Sets and Systems 333 (2017), 106-123. MR3739684DOI10.1016/j.fss.2017.02.008
  37. Xu, D., Wang, X., Hong, Y., Jiang, Z. P., 10.1016/j.sysconle.2015.11.002, Systems Control Lett. 87 (2016), 64-69. MR3433242DOI10.1016/j.sysconle.2015.11.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.