A novel algorithm for the modeling of complex processes
José de Jesús Rubio; Edwin Lughofer; Angelov Plamen; Juan Francisco Novoa; Jesús A. Meda-Campaña
Kybernetika (2018)
- Volume: 54, Issue: 1, page 79-95
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRubio, José de Jesús, et al. "A novel algorithm for the modeling of complex processes." Kybernetika 54.1 (2018): 79-95. <http://eudml.org/doc/294558>.
@article{Rubio2018,
abstract = {In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.},
author = {Rubio, José de Jesús, Lughofer, Edwin, Plamen, Angelov, Novoa, Juan Francisco, Meda-Campaña, Jesús A.},
journal = {Kybernetika},
keywords = {recursive least square; Kalman filter; modeling; complex processes},
language = {eng},
number = {1},
pages = {79-95},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A novel algorithm for the modeling of complex processes},
url = {http://eudml.org/doc/294558},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Rubio, José de Jesús
AU - Lughofer, Edwin
AU - Plamen, Angelov
AU - Novoa, Juan Francisco
AU - Meda-Campaña, Jesús A.
TI - A novel algorithm for the modeling of complex processes
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 79
EP - 95
AB - In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.
LA - eng
KW - recursive least square; Kalman filter; modeling; complex processes
UR - http://eudml.org/doc/294558
ER -
References
top- Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F., 10.1155/2013/197690, Math. Problems Engrg. (2013), 9 pages. DOI10.1155/2013/197690
- Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., A wind speed neural model with particle swarm optimization Kalman learning., In: International Joint Conference on Neural Networks 2006, pp. 1993-2000.
- Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F., A wind speed neural model with particle swarm optimization Kalman learning., In: World Automation Congress 2012, pp. 1-5. MR3063031
- Astrom, K. J., Wittenmark, B., Adaptive Control. Second edition., Addison-Wesley Longman Publishing Co., Inc., Boston (1994).
- Bifet, A., Gavalda, R., 10.1007/11893318, In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg. DOI10.1007/11893318
- Čelikovský, S., Topological equivalence and topological linearization of controlled dynamical systems., Kybernetika 31 (1995), 141-150. MR1334506
- Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J., 10.1016/j.fss.2016.12.017, Fuzzy Sets and Systems 337 (2018), 52-73. MR3766926DOI10.1016/j.fss.2016.12.017
- Chen, G., Xie, Q., Shieh, L. S., 10.1016/s0020-0255(98)10002-6, J. Inform. Sci. 109 (1998), 197-209. MR1634612DOI10.1016/s0020-0255(98)10002-6
- Coelho, J. K., Pena, M.Ḋ., Romero, O. J., 10.1109/tla.2016.7483518, IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807. DOI10.1109/tla.2016.7483518
- Deng, Z., Wang, X., Hong, Y., 10.1049/iet-cta.2016.0795, IET Control Theory Appl. 11 (2017), 2, 282-290. MR3675134DOI10.1049/iet-cta.2016.0795
- Dolinský, K., Čelikovský, S., 10.1109/acc.2012.6315366, In: American Control Conference 2012, pp. 4789-4794. DOI10.1109/acc.2012.6315366
- Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P., 10.1109/7.976975, IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418. DOI10.1109/7.976975
- E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y., 10.1016/j.neucom.2014.12.059, Neurocomputing 164 (2015), 307-317. DOI10.1016/j.neucom.2014.12.059
- Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H., 10.1109/tcst.2013.2280920, IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628. DOI10.1109/tcst.2013.2280920
- Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H., 10.1016/j.automatica.2013.06.001, Automatica 49 (2013), 2874-2880. MR3084477DOI10.1016/j.automatica.2013.06.001
- Kalman, R. E., 10.1115/1.3662552, Trans. ASME, J. Basic Engrg. 82 (1960), 35-45. DOI10.1115/1.3662552
- Khemchandani, R., Pal, A., Chandra, S., 10.1007/s00521-016-2468-4, Neural Computing Appl. 29 (2018), 553-563. DOI10.1007/s00521-016-2468-4
- Lizasoain, I., Gomez, M., 10.1016/j.fss.2017.01.006, Fuzzy Sets and Systems 317 (2017), 133-150. DOI10.1016/j.fss.2017.01.006
- Liu, F., Zhao, R., Tan, T., Zhang, Q., 10.1002/asjc.1253, Asian J. Control 18 (2016), 5, 1679-1687. MR3564277DOI10.1002/asjc.1253
- Ljung, L., System Identification: Theory for the User., Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999.
- Lughofer, E., Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications., Springer, Berlin, Heidelberg 2011.
- Lughofer, E., 10.1007/s12530-012-9060-7, Evolving Systems 3 (2012), 4, 251-271. DOI10.1007/s12530-012-9060-7
- Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T., 10.1016/j.ins.2016.03.034, Inform. Sci. 355-356 (2016), 127-151. DOI10.1016/j.ins.2016.03.034
- Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T., 10.1007/s00521-016-2492-4, Neural Computing Appl. 29 (2018), 873-888. DOI10.1007/s00521-016-2492-4
- Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A., 10.1371/journal.pone.0167568, Plos One (2016), 1-16. DOI10.1371/journal.pone.0167568
- Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P., 10.1016/j.neucom.2015.06.022, Neurocomputing 171 (2016), 89-105. DOI10.1016/j.neucom.2015.06.022
- Rehák, B., Čelikovský, S., 10.1016/j.automatica.2007.10.015, Automatica 44 (2008), 1358-1365. MR2531803DOI10.1016/j.automatica.2007.10.015
- Rubio, J. J., 10.1016/j.neunet.2016.02.006, Neural Networks 78 (2016), 88-96. DOI10.1016/j.neunet.2016.02.006
- Rubio, J. J., 10.1016/j.jfranklin.2017.08.038, J. Franklin Inst. 354 (2017), 7444-7462. DOI10.1016/j.jfranklin.2017.08.038
- Rubio, J. J., 10.1109/tfuzz.2009.2029569, IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309. DOI10.1109/tfuzz.2009.2029569
- Sanchez, E. N., Alanis, A. Y., Rico, J., 10.1109/ijcnn.2004.1381093, In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775. DOI10.1109/ijcnn.2004.1381093
- Sun, X. M., Wang, X. F., Hong, Y., Xia, W., 10.1109/tie.2016.2637888, IEEE Trans. Industr. Electron. 64 (2017), 3260-3267. DOI10.1109/tie.2016.2637888
- Weng, Z., Chen, G., Shieh, L. S., Larsson, J., 10.1016/s0020-0255(00)00064-5, Inform. Sci. 129 (2000), 197-210. MR1802157DOI10.1016/s0020-0255(00)00064-5
- Wu, H., Deng, Y., 10.1016/j.fss.2015.09.012, Fuzzy Sets and Systems 301 (2016), 19-36. MR3537844DOI10.1016/j.fss.2015.09.012
- Wu, H., Deng, Y., 10.1109/tfuzz.2017.2670605, IEEE Trans. Fuzzy Systems 99 (2017), 1-1. DOI10.1109/tfuzz.2017.2670605
- Wu, H., Chen, Y., Bu, T., Deng, Y., 10.1016/j.fss.2017.02.008, Fuzzy Sets and Systems 333 (2017), 106-123. MR3739684DOI10.1016/j.fss.2017.02.008
- Xu, D., Wang, X., Hong, Y., Jiang, Z. P., 10.1016/j.sysconle.2015.11.002, Systems Control Lett. 87 (2016), 64-69. MR3433242DOI10.1016/j.sysconle.2015.11.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.