Topological equivalence and topological linearization of controlled dynamical systems

Sergej Čelikovský

Kybernetika (1995)

  • Volume: 31, Issue: 2, page 141-150
  • ISSN: 0023-5954

How to cite

top

Čelikovský, Sergej. "Topological equivalence and topological linearization of controlled dynamical systems." Kybernetika 31.2 (1995): 141-150. <http://eudml.org/doc/27582>.

@article{Čelikovský1995,
author = {Čelikovský, Sergej},
journal = {Kybernetika},
keywords = {transformations; topological equivalence; topological linearization; nonsmooth stabilization},
language = {eng},
number = {2},
pages = {141-150},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Topological equivalence and topological linearization of controlled dynamical systems},
url = {http://eudml.org/doc/27582},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Čelikovský, Sergej
TI - Topological equivalence and topological linearization of controlled dynamical systems
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 2
SP - 141
EP - 150
LA - eng
KW - transformations; topological equivalence; topological linearization; nonsmooth stabilization
UR - http://eudml.org/doc/27582
ER -

References

top
  1. D. Aeyels, Local and global controllability for nonlinear systems, Systems Control Lett. 5 (1984), 19-26. (1984) Zbl0552.93009MR0768710
  2. D. Aeyels, Stabilization of a class of nonlinear systems by a smooth feedback control, Systems Control Lett. 5 (1985), 289-294. (1985) Zbl0569.93056MR0791542
  3. R. W. Brockett, Feedback invariants for nonlinear systems, In: Proc. of the Vllth IFAC World Congress, Helsinki 1978, pp. 1115-1120. (1978) 
  4. S. Čelikovský, On the representation of trajectories of bilinear systems and its applications, Kybernetika 23 (1987), 3, 198-213. (1987) MR0900330
  5. S. Čelikovský, On the continuous dependence of trajectories of bilinear systems and its applications, Kybernetika 24 (1988), 4, 278-292. (1988) MR0961561
  6. S. Čelikovský, On the Lipschitzean dependence of trajectories of multi-input time dependent bilinear systems on controls, Problems Control Inform. Theory 17(1988), 4, 231-238. (1988) MR0958030
  7. S. Čelikovský, Topological Hnearization of nonlinear systems: Application to the non-smooth stabilization, In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41 44. (1993) 
  8. S. Čelikovský, Global linearization of nonlinear systems: A survey, In: Geometry in Nonhnear and Differential Inclusions (Banach Center Publications, Vol. 32), Polish Academy of Sciences, Warszawa 1995. (1995) MR1364424
  9. S. Čelikovský, Numerical algorithm for the nonsmooth stabilization based on topological Hnearization, In: Optimization-Based Computer-Aided Modelling and Design (J. Doležal and J. Fidler, eds.), ÚTIA AV ČR, Prague 1995. (1995) 
  10. D. Claude, Everything you always wanted to know about linearization but were afraid to ask, In: Proc. of the Conf. Algebraic and Geometric Methods in Nonlinear Control Theory, Paris 1985 (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986. (1985) MR0862326
  11. W. Dayawansa W. M. Boothby, D. L. Elliot, Global state and feedback equivalence of nonlinear systems, Systems Control Lett. 6 (1985), 229-234. (1985) MR0812254
  12. M. Fliess, F. Messager, Vers une stabilisation non lineaire discontinue, In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), (Lecture Notes in Control Inform. Science 144), Springer-Veilag, New York 1990, pp. 778-787. (1990) Zbl0716.93046
  13. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1986. (1986) MR1139515
  14. R. E. Kalman P. L. Falb, M. A. Arbib, Topics in Mathematical Systems Theory, McGraw-Hill, New York 1969. (1969) MR0255260
  15. M. Kawski, Stabilization of nonlinear systems in the plane, Systems Control Lett. 12 (1989), 169-175. (1989) Zbl0666.93103MR0985567
  16. R. R. Kadiyala, A tool box for approximate linearization of nonlinear systems, IEEE Control Systems Magazine, April 1993, 47-57. (1993) 
  17. W. Respondek, Geometiic methods in linearization of control systems, In: Mathematical Control Theoty, Banach Centei Publications 14 (1985), 453-467. (1985) MR0851243
  18. J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 56 (1991), 259-294. (1991) Zbl0737.93004MR1092818
  19. L. A. Zadeh, C. A. Desoer, Linear Systems Theory, McGraw-Hill, New Yoik 1963. (1963) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.