A binary operation-based representation of a lattice

Mourad Yettou; Abdelaziz Amroune; Lemnaouar Zedam

Kybernetika (2019)

  • Volume: 55, Issue: 2, page 252-272
  • ISSN: 0023-5954

Abstract

top
In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.

How to cite

top

Yettou, Mourad, Amroune, Abdelaziz, and Zedam, Lemnaouar. "A binary operation-based representation of a lattice." Kybernetika 55.2 (2019): 252-272. <http://eudml.org/doc/294561>.

@article{Yettou2019,
abstract = {In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.},
author = {Yettou, Mourad, Amroune, Abdelaziz, Zedam, Lemnaouar},
journal = {Kybernetika},
keywords = {lattice; binary operation; neutral element; lattice representation},
language = {eng},
number = {2},
pages = {252-272},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A binary operation-based representation of a lattice},
url = {http://eudml.org/doc/294561},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Yettou, Mourad
AU - Amroune, Abdelaziz
AU - Zedam, Lemnaouar
TI - A binary operation-based representation of a lattice
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 252
EP - 272
AB - In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.
LA - eng
KW - lattice; binary operation; neutral element; lattice representation
UR - http://eudml.org/doc/294561
ER -

References

top
  1. Ashraf, M., Ali, S., Haetinger, C., On derivations in rings and their applications., Aligarh Bull. Math. 25 (2006), 79-107. MR2537802
  2. Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic., Springer, Berlin 2013. Zbl1271.03001MR3024762
  3. Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practitioners., Springer, Heidelberg 2007. 
  4. Birkhoff, G., Lattice Theory. Third edition., Amer. Math. Soc., Providence 1967. MR0227053
  5. Blyth, T. S., Set theory and abstract algebra., Longman, London, New York 1975. MR0223196
  6. Cooman, G. D., Kerre, E. E., Order norms on bounded partially ordered sets., J. Fuzzy Math. 2 (1994), 281-310. Zbl0814.04005MR1280148
  7. Davey, B. A., Priestley, H. A., 10.1017/cbo9780511809088, Cambridge University Press, 2002. MR1902334DOI10.1017/cbo9780511809088
  8. Dummit, D. S., Foote, R. M., Abstract Algebra. Third edition., Hoboken, Wiley 2004. MR2286236
  9. Ferrari, L., On derivations of lattices., Pure Math. Appl. 12 (2001), 365-382. MR1943869
  10. Grätzer, G., Wehrung, F., 10.1007/978-3-319-06413-0, Springer International Publishing Switzerland, 2014. MR2451139DOI10.1007/978-3-319-06413-0
  11. Grätzer, G., Wehrung, F., 10.1007/978-3-319-44236-5, Springer International Publishing Switzerland, 2016. MR2451139DOI10.1007/978-3-319-44236-5
  12. Halaš, R., Pócs, J., 10.1016/j.ins.2015.09.038, Inform. Sci. 329 (2016), 381-389. DOI10.1016/j.ins.2015.09.038
  13. Jwaid, T., Baets, B. De, Kalická, J., Mesiar, R., 10.1016/j.fss.2010.07.004, Fuzzy Sets Systems 167 (2011), 3-20. MR2765243DOI10.1016/j.fss.2010.07.004
  14. Karaçal, F., A t-partial order obtained from t-norms., Kybernetika 47 (2011), 300-314. MR2828579
  15. Karaçal, F., Mesiar, R., 10.1080/03081079.2017.1291634, Int. J. General Systems 46 (2017), 37-51. MR3623328DOI10.1080/03081079.2017.1291634
  16. Kolman, B., Busby, R. C., Ross, S. C., Discrete Mathematical Structures. Fourth edition., Prentice-Hall, Inc., 2003. 
  17. Komorníková, M., Mesiar, R., 10.1016/j.fss.2011.01.015, Fuzzy Sets Systems 175 (2011), 48-56. MR2803411DOI10.1016/j.fss.2011.01.015
  18. Lidl, R., Pilz, G., 10.1007/978-1-4757-2941-2, Springer-Verlag, New York, Berlin, Heidelberg 1998. MR1485777DOI10.1007/978-1-4757-2941-2
  19. Lipschutz, S., 10.1201/b13782, McGraw-Hill, 2007. DOI10.1201/b13782
  20. Martínez, R., Massó, J., Neme, A., Oviedo, J., 10.1080/02331930108844574, Optimization 50 (2001), 439-457. MR1892915DOI10.1080/02331930108844574
  21. Medina, J., 10.1016/j.fss.2012.03.002, Fuzzy Sets and Systems 202 (2012), 75-88. MR2934787DOI10.1016/j.fss.2012.03.002
  22. Mesiar, R., Komorníková, M., 10.1007/978-3-642-16629-7_1, 35 Years of Fuzzy Set Theory, Springer, Berlin, Heidelberg 261 (2010), pp. 3-17. MR3289892DOI10.1007/978-3-642-16629-7_1
  23. Ponasse, D., Carrega, J. C., Algèbre et tobologie boléennes., Masson, Paris 1979. MR0532013
  24. Risma, E. P., 10.1016/j.mathsocsci.2014.11.001, Math. Soc. Sci. 73 (2015), 6-12. MR3294778DOI10.1016/j.mathsocsci.2014.11.001
  25. Roman, S., 10.1007/978-0-387-78901-9, Springer Science and Business Media, New York 2008. MR2446182DOI10.1007/978-0-387-78901-9
  26. Rosenfeld, A., An Introduction to Algebraic Structures., Holden-Day, San Francisco 1968. MR0232630
  27. Schröder, B. S., 10.1007/978-1-4612-0053-6, Birkhauser, Boston 2003. MR1944415DOI10.1007/978-1-4612-0053-6
  28. Szász, G., 10.1007/bf01238704, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961), 449-453. MR0132705DOI10.1007/bf01238704
  29. Szász, G., 10.1016/s0020-1693(00)93924-0, Acta Sci. Math. 37 (1975), 149-154. MR0382090DOI10.1016/s0020-1693(00)93924-0
  30. Xin, X. L., Li, T. Y., Lu, J. H., 10.1016/j.ins.2007.08.018, Inform. Sci. 178 (2008), 307-316. MR2363221DOI10.1016/j.ins.2007.08.018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.