A binary operation-based representation of a lattice
Mourad Yettou; Abdelaziz Amroune; Lemnaouar Zedam
Kybernetika (2019)
- Volume: 55, Issue: 2, page 252-272
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topYettou, Mourad, Amroune, Abdelaziz, and Zedam, Lemnaouar. "A binary operation-based representation of a lattice." Kybernetika 55.2 (2019): 252-272. <http://eudml.org/doc/294561>.
@article{Yettou2019,
abstract = {In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.},
author = {Yettou, Mourad, Amroune, Abdelaziz, Zedam, Lemnaouar},
journal = {Kybernetika},
keywords = {lattice; binary operation; neutral element; lattice representation},
language = {eng},
number = {2},
pages = {252-272},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A binary operation-based representation of a lattice},
url = {http://eudml.org/doc/294561},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Yettou, Mourad
AU - Amroune, Abdelaziz
AU - Zedam, Lemnaouar
TI - A binary operation-based representation of a lattice
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 252
EP - 272
AB - In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices.
LA - eng
KW - lattice; binary operation; neutral element; lattice representation
UR - http://eudml.org/doc/294561
ER -
References
top- Ashraf, M., Ali, S., Haetinger, C., On derivations in rings and their applications., Aligarh Bull. Math. 25 (2006), 79-107. MR2537802
- Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic., Springer, Berlin 2013. Zbl1271.03001MR3024762
- Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practitioners., Springer, Heidelberg 2007.
- Birkhoff, G., Lattice Theory. Third edition., Amer. Math. Soc., Providence 1967. MR0227053
- Blyth, T. S., Set theory and abstract algebra., Longman, London, New York 1975. MR0223196
- Cooman, G. D., Kerre, E. E., Order norms on bounded partially ordered sets., J. Fuzzy Math. 2 (1994), 281-310. Zbl0814.04005MR1280148
- Davey, B. A., Priestley, H. A., 10.1017/cbo9780511809088, Cambridge University Press, 2002. MR1902334DOI10.1017/cbo9780511809088
- Dummit, D. S., Foote, R. M., Abstract Algebra. Third edition., Hoboken, Wiley 2004. MR2286236
- Ferrari, L., On derivations of lattices., Pure Math. Appl. 12 (2001), 365-382. MR1943869
- Grätzer, G., Wehrung, F., 10.1007/978-3-319-06413-0, Springer International Publishing Switzerland, 2014. MR2451139DOI10.1007/978-3-319-06413-0
- Grätzer, G., Wehrung, F., 10.1007/978-3-319-44236-5, Springer International Publishing Switzerland, 2016. MR2451139DOI10.1007/978-3-319-44236-5
- Halaš, R., Pócs, J., 10.1016/j.ins.2015.09.038, Inform. Sci. 329 (2016), 381-389. DOI10.1016/j.ins.2015.09.038
- Jwaid, T., Baets, B. De, Kalická, J., Mesiar, R., 10.1016/j.fss.2010.07.004, Fuzzy Sets Systems 167 (2011), 3-20. MR2765243DOI10.1016/j.fss.2010.07.004
- Karaçal, F., A t-partial order obtained from t-norms., Kybernetika 47 (2011), 300-314. MR2828579
- Karaçal, F., Mesiar, R., 10.1080/03081079.2017.1291634, Int. J. General Systems 46 (2017), 37-51. MR3623328DOI10.1080/03081079.2017.1291634
- Kolman, B., Busby, R. C., Ross, S. C., Discrete Mathematical Structures. Fourth edition., Prentice-Hall, Inc., 2003.
- Komorníková, M., Mesiar, R., 10.1016/j.fss.2011.01.015, Fuzzy Sets Systems 175 (2011), 48-56. MR2803411DOI10.1016/j.fss.2011.01.015
- Lidl, R., Pilz, G., 10.1007/978-1-4757-2941-2, Springer-Verlag, New York, Berlin, Heidelberg 1998. MR1485777DOI10.1007/978-1-4757-2941-2
- Lipschutz, S., 10.1201/b13782, McGraw-Hill, 2007. DOI10.1201/b13782
- Martínez, R., Massó, J., Neme, A., Oviedo, J., 10.1080/02331930108844574, Optimization 50 (2001), 439-457. MR1892915DOI10.1080/02331930108844574
- Medina, J., 10.1016/j.fss.2012.03.002, Fuzzy Sets and Systems 202 (2012), 75-88. MR2934787DOI10.1016/j.fss.2012.03.002
- Mesiar, R., Komorníková, M., 10.1007/978-3-642-16629-7_1, 35 Years of Fuzzy Set Theory, Springer, Berlin, Heidelberg 261 (2010), pp. 3-17. MR3289892DOI10.1007/978-3-642-16629-7_1
- Ponasse, D., Carrega, J. C., Algèbre et tobologie boléennes., Masson, Paris 1979. MR0532013
- Risma, E. P., 10.1016/j.mathsocsci.2014.11.001, Math. Soc. Sci. 73 (2015), 6-12. MR3294778DOI10.1016/j.mathsocsci.2014.11.001
- Roman, S., 10.1007/978-0-387-78901-9, Springer Science and Business Media, New York 2008. MR2446182DOI10.1007/978-0-387-78901-9
- Rosenfeld, A., An Introduction to Algebraic Structures., Holden-Day, San Francisco 1968. MR0232630
- Schröder, B. S., 10.1007/978-1-4612-0053-6, Birkhauser, Boston 2003. MR1944415DOI10.1007/978-1-4612-0053-6
- Szász, G., 10.1007/bf01238704, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961), 449-453. MR0132705DOI10.1007/bf01238704
- Szász, G., 10.1016/s0020-1693(00)93924-0, Acta Sci. Math. 37 (1975), 149-154. MR0382090DOI10.1016/s0020-1693(00)93924-0
- Xin, X. L., Li, T. Y., Lu, J. H., 10.1016/j.ins.2007.08.018, Inform. Sci. 178 (2008), 307-316. MR2363221DOI10.1016/j.ins.2007.08.018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.