A T-partial order obtained from T-norms
Funda Karaçal; M. Nesibe Kesicioğlu
Kybernetika (2011)
- Volume: 47, Issue: 2, page 300-314
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKaraçal, Funda, and Kesicioğlu, M. Nesibe. "A T-partial order obtained from T-norms." Kybernetika 47.2 (2011): 300-314. <http://eudml.org/doc/196741>.
@article{Karaçal2011,
abstract = {A partial order on a bounded lattice $L$ is called t-order if it is defined by means of the t-norm on $L$. It is obtained that for a t-norm on a bounded lattice $L$ the relation $a\preceq _\{T\}b$ iff $a=T(x,b)$ for some $x\in L$ is a partial order. The goal of the paper is to determine some conditions such that the new partial order induces a bounded lattice on the subset of all idempotent elements of $L$ and a complete lattice on the subset $A$ of all elements of $L$ which are the supremum of a subset of atoms.},
author = {Karaçal, Funda, Kesicioğlu, M. Nesibe},
journal = {Kybernetika},
keywords = {triangular norm; bounded lattice; triangular action; $\bigvee $-distributive; idempotent element; triangular norm; bounded lattice; triangular action; -distributive; idempotent element},
language = {eng},
number = {2},
pages = {300-314},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A T-partial order obtained from T-norms},
url = {http://eudml.org/doc/196741},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Karaçal, Funda
AU - Kesicioğlu, M. Nesibe
TI - A T-partial order obtained from T-norms
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 2
SP - 300
EP - 314
AB - A partial order on a bounded lattice $L$ is called t-order if it is defined by means of the t-norm on $L$. It is obtained that for a t-norm on a bounded lattice $L$ the relation $a\preceq _{T}b$ iff $a=T(x,b)$ for some $x\in L$ is a partial order. The goal of the paper is to determine some conditions such that the new partial order induces a bounded lattice on the subset of all idempotent elements of $L$ and a complete lattice on the subset $A$ of all elements of $L$ which are the supremum of a subset of atoms.
LA - eng
KW - triangular norm; bounded lattice; triangular action; $\bigvee $-distributive; idempotent element; triangular norm; bounded lattice; triangular action; -distributive; idempotent element
UR - http://eudml.org/doc/196741
ER -
References
top- Birkhoff, G., Lattice Theory, Third edition. Providience 1967. (1967) Zbl0153.02501MR0227053
- Baets, B. De, Mesiar, R., Triangular norms on product lattices, Fuzzy Sets and Systems104 (1999), 61–75. (1999) Zbl0935.03060MR1685810
- Baets, B. De, Mesiar, R., Triangular norms on the real unit square, In: Proc. 1999 EUSFLAT-EST YLF Joint Conference, Palma de Mallorca 1999, pp. 351-354. (1999)
- Casasnovas, J., Mayor, G., Discrete t-norms and operations on extended multisets, Fuzzy Sets and Systems 1599 (2008), 1165–1177. (2008) Zbl1176.03023MR2416385
- Drossos, C. A., Generalized t-norm structures, Fuzzy Sets and Systems 104 (1999), 53–59. (1999) Zbl0928.03069MR1685809
- Gonzalez, L., A note on the infinitary action of triangular norms and conorms, Fuzzy Sets and Systems 101 (1999), 177–180. (1999) Zbl0934.03033MR1658924
- Gottwald, S., A Treatise on Many-Valued Logics, Research Studies Press Ltd., Baldock, Hertfordshire 2001. (2001) Zbl1048.03002MR1856623
- Hungerford, T., Algebra, Springer-Verlag 1974. (1974) Zbl0293.12001MR0600654
- Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht 1998. (1998) MR1900263
- Höhle, U., Commutative, residuated -monoids, In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory (U. Hhle and E. P. Klement, eds.). Kluwer, Dordrecht 1995. (1995)
- Jenei, S., Baets, B. De, On the direct decomposability of t-norms on product lattices, Fuzzy Sets and Systems 139 (2003), 699–707. (2003) Zbl1032.03022MR2015162
- Karaçal, F., Sağıroğlu, Y., Infinetely -distributive t-norm on complete lattices and pseudo-complements, Fuzzy Sets and Systems 160 (2009), 32–43. (2009)
- Karaçal, F., Khadjiev, Dj., -distributive and infinitely -distributive t-norms on complete lattice, Fuzzy Sets and Systems 151 (2005), 341–352. (2005) MR2124884
- Karaçal, F., 10.1016/j.ins.2005.12.010, Inform. Sci. 176 (2006), 3011–3025. (2006) Zbl1104.03016MR2247614DOI10.1016/j.ins.2005.12.010
- P.Klement, E., 10.1016/0020-0255(82)90026-3, Inform. Sci. 27 (1982), 221–232. (1982) Zbl0515.03036MR0689642DOI10.1016/0020-0255(82)90026-3
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000. (2000) Zbl1010.03046MR1790096
- Liang, X., Pedrycz, W., Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms, Fuzzy Sets and Systems 160 (2009), 3475–3502. (2009) Zbl1185.68546MR2563300
- Maes, K. C., Mesiarová-Zemánková, A., 10.1016/j.ins.2008.11.035, Inform. Sci. 179 (2009), 1221–1233. (2009) Zbl1162.03013MR2501780DOI10.1016/j.ins.2008.11.035
- Mesiarová, A., 10.1016/j.ins.2005.03.011, Inform. Sci. 176 (2006), 1531–1545. (2006) Zbl1094.03040MR2225327DOI10.1016/j.ins.2005.03.011
- Mitsch, H., 10.1090/S0002-9939-1986-0840614-0, Proc. Amer. Math. Soc. 97 (1986), 384–388. (1986) Zbl0596.06015MR0840614DOI10.1090/S0002-9939-1986-0840614-0
- Saminger, S., On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems 157 (2006), 1403–1416. (2006) Zbl1099.06004MR2226983
- Saminger-Platz, S., Klement, E. P., Mesiar, R., 10.1016/S0019-3577(08)80019-5, Indag. Math. 19 (2009), 135–150. (2009) MR2466398DOI10.1016/S0019-3577(08)80019-5
- Samuel, S., Calculating the large N phase diagram in the fundamental-adjoint action lattice theory, Phys. Lett. 122 (1983), 287–289. (1983)
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces, Elsevier, Amsterdam 1983. (1983) Zbl0546.60010MR0790314
- Wang, Z., 10.1016/j.ins.2006.03.019, Inform. Sci. 177 (2007), 887–896. (2007) MR2287146DOI10.1016/j.ins.2006.03.019
Citations in EuDML Documents
top- Emel Aşıcı, Funda Karaçal, Incomparability with respect to the triangular order
- M. Nesibe Kesicioğlu, About the equivalence of nullnorms on bounded lattice
- Lifeng Li, Jianke Zhang, Chang Zhou, Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice
- M. Nesibe Kesicioğlu, Ü. Ertuğrul, F. Karaçal, Some notes on U-partial order
- Emel Aşıcı, Radko Mesiar, On the direct product of uninorms on bounded lattices
- Funda Karaçal, Ümit Ertuğrul, M. Nesibe Kesicioğlu, An extension method for t-norms on subintervals to t-norms on bounded lattices
- Mourad Yettou, Abdelaziz Amroune, Lemnaouar Zedam, A binary operation-based representation of a lattice
- Emel Aşıcı, An extension of the ordering based on nullnorms
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.