Solutions of semi-Markov control models with recursive discount rates and approximation by ϵ -optimal policies

Yofre H. García; Juan González-Hernández

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 495-517
  • ISSN: 0023-5954

Abstract

top
This paper studies a class of discrete-time discounted semi-Markov control model on Borel spaces. We assume possibly unbounded costs and a non-stationary exponential form in the discount factor which depends of on a rate, called the discount rate. Given an initial discount rate the evolution in next steps depends on both the previous discount rate and the sojourn time of the system at the current state. The new results provided here are the existence and the approximation of optimal policies for this class of discounted Markov control model with non-stationary rates and the horizon is finite or infinite. Under regularity condition on sojourn time distributions and measurable selector conditions, we show the validity of the dynamic programming algorithm for the finite horizon case. By the convergence in finite steps to the value functions, we guarantee the existence of non-stationary optimal policies for the infinite horizon case and we approximate them using non-stationary ϵ -optimal policies. We illustrated our results a discounted semi-Markov linear-quadratic model, when the evolution of the discount rate follows an appropriate type of stochastic differential equation.

How to cite

top

García, Yofre H., and González-Hernández, Juan. "Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon $-optimal policies." Kybernetika 55.3 (2019): 495-517. <http://eudml.org/doc/294562>.

@article{García2019,
abstract = {This paper studies a class of discrete-time discounted semi-Markov control model on Borel spaces. We assume possibly unbounded costs and a non-stationary exponential form in the discount factor which depends of on a rate, called the discount rate. Given an initial discount rate the evolution in next steps depends on both the previous discount rate and the sojourn time of the system at the current state. The new results provided here are the existence and the approximation of optimal policies for this class of discounted Markov control model with non-stationary rates and the horizon is finite or infinite. Under regularity condition on sojourn time distributions and measurable selector conditions, we show the validity of the dynamic programming algorithm for the finite horizon case. By the convergence in finite steps to the value functions, we guarantee the existence of non-stationary optimal policies for the infinite horizon case and we approximate them using non-stationary $\epsilon $-optimal policies. We illustrated our results a discounted semi-Markov linear-quadratic model, when the evolution of the discount rate follows an appropriate type of stochastic differential equation.},
author = {García, Yofre H., González-Hernández, Juan},
journal = {Kybernetika},
keywords = {optimal stochastic control; dynamic programming method; semi-Markov processes},
language = {eng},
number = {3},
pages = {495-517},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon $-optimal policies},
url = {http://eudml.org/doc/294562},
volume = {55},
year = {2019},
}

TY - JOUR
AU - García, Yofre H.
AU - González-Hernández, Juan
TI - Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon $-optimal policies
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 495
EP - 517
AB - This paper studies a class of discrete-time discounted semi-Markov control model on Borel spaces. We assume possibly unbounded costs and a non-stationary exponential form in the discount factor which depends of on a rate, called the discount rate. Given an initial discount rate the evolution in next steps depends on both the previous discount rate and the sojourn time of the system at the current state. The new results provided here are the existence and the approximation of optimal policies for this class of discounted Markov control model with non-stationary rates and the horizon is finite or infinite. Under regularity condition on sojourn time distributions and measurable selector conditions, we show the validity of the dynamic programming algorithm for the finite horizon case. By the convergence in finite steps to the value functions, we guarantee the existence of non-stationary optimal policies for the infinite horizon case and we approximate them using non-stationary $\epsilon $-optimal policies. We illustrated our results a discounted semi-Markov linear-quadratic model, when the evolution of the discount rate follows an appropriate type of stochastic differential equation.
LA - eng
KW - optimal stochastic control; dynamic programming method; semi-Markov processes
UR - http://eudml.org/doc/294562
ER -

References

top
  1. Arnold, L., Stochastic Differential Equations., John Wiley and Sons, New York 1973. MR0443083
  2. Ash, R., Doléans-Dade, C., Probability and Measure Theory., Academic Press, San Diego, 2000. Zbl0944.60004MR1810041
  3. Bhattacharya, R., Majumdar, M., 10.1016/0378-3758(89)90053-0, J. Statist. Plann. Inference 21 (1989), 3, 365-381. MR0995606DOI10.1016/0378-3758(89)90053-0
  4. Bertsekas, D., Shreve, S., Stochastic Optimal Control: The Discrete Time Case., Athena Scientific, Belmont, Massachusetts 1996. Zbl0633.93001MR0809588
  5. Blackwell, D., 10.1214/aoms/1177700285, Ann. Math. Statist. 36, (1965), 226-235. MR0173536DOI10.1214/aoms/1177700285
  6. Cani, J. De, 10.1287/mnsc.10.4.716, Management. Sci. 10 (1963), 716-733. MR0169690DOI10.1287/mnsc.10.4.716
  7. Drenyovszki, R., Kovács, L., Tornai, K., Oláh, A., I., I. Pintér, 10.14736/kyb-2017-6-1100, Kybernetika 53 (2017), 6, 1100-1117. DOI10.14736/kyb-2017-6-1100
  8. Dekker, R., Hordijk, A., 10.1007/bf02055581, Ann. Oper. Res. 28 (1991), 185-212. MR1105173DOI10.1007/bf02055581
  9. García, Y., González-Hernández, J., 10.14736/kyb-2016-3-0403, Kybernetika 52 (2016), 403-426. MR3532514DOI10.14736/kyb-2016-3-0403
  10. González-Hernández, J., López-Martínez, R., Pérez-Hernández, J., 10.1007/s00186-006-0092-2, Math. Meth. Oper. Res. 65 (2006), 27-44. Zbl1126.90075MR2302022DOI10.1007/s00186-006-0092-2
  11. González-Hernández, J., Villarreal-Rodríguez, C., Optimal solutions of constrained discounted semi-Markov control problems 
  12. Hernández-Lerma, O., Lasserre, J., 10.1007/978-1-4612-0729-0_1, Springer-Verlag, New York 1996. Zbl0840.93001MR1363487DOI10.1007/978-1-4612-0729-0_1
  13. Hu, Q., Yue, W., 10.14736/kyb-2017-1-0059, Springer-Verlag, Advances in Mechanics and Mathematics book series 14, (2008). MR2361223DOI10.14736/kyb-2017-1-0059
  14. Huang, X., Huang, Y., 10.14736/kyb-2017-1-0059, Kybernetika 53 (2017), 1, 59-81. MR3638556DOI10.14736/kyb-2017-1-0059
  15. Howard, R., Semi-Markovian decision processes., Bull. Int. Statist. Inst. 40 (1963), 2, 625-652. MR0173545
  16. Jewell, W., 10.1287/opre.11.6.938, Oper. Res. 11 (1963), 938-971. MR0163375DOI10.1287/opre.11.6.938
  17. Luque-Vázquez, F., Hernández-Lerma, O., 10.4064/am-26-3-315-331, Appl. Math. 26 (1999), 315-331. MR1726636DOI10.4064/am-26-3-315-331
  18. Luque-Vásquez, F., Minjárez-Sosa, J. A., 10.1007/s001860400406, Math. Methods Oper. Res. 61 (2005), 455-468. MR2225824DOI10.1007/s001860400406
  19. Luque-Vásquez, F., Minjárez-Sosa, J., Rosas, L., 10.1007/s00245-009-9086-9, Appl. Math. Optim. 61, (2010), 317-336. MR2609593DOI10.1007/s00245-009-9086-9
  20. Schweitzer, P., Perturbation Theory and Markovian Decision Processes., Ph.D. Dissertation, Massachusetts Institute of Technology, 1965. MR2939613
  21. Vasicek, O., 10.1016/0304-405x(77)90016-2, J. Financ. Econom. 5 (1977), 177-188. DOI10.1016/0304-405x(77)90016-2
  22. Vega-Amaya, O., Average optimatily in semi-Markov control models on Borel spaces: unbounded costs and control., Bol. Soc. Mat. Mexicana 38 (1997), 2, 47-60. MR1313106
  23. Zagst, R., 10.1007/BF01432360, ZOR - Math. Methods Oper. Res. 41 (1995), 277-288. MR1339493DOI10.1007/BF01432360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.