Solutions of semi-Markov control models with recursive discount rates and approximation by -optimal policies
Yofre H. García; Juan González-Hernández
Kybernetika (2019)
- Volume: 55, Issue: 3, page 495-517
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Arnold, L., Stochastic Differential Equations., John Wiley and Sons, New York 1973. MR0443083
- Ash, R., Doléans-Dade, C., Probability and Measure Theory., Academic Press, San Diego, 2000. Zbl0944.60004MR1810041
- Bhattacharya, R., Majumdar, M., 10.1016/0378-3758(89)90053-0, J. Statist. Plann. Inference 21 (1989), 3, 365-381. MR0995606DOI10.1016/0378-3758(89)90053-0
- Bertsekas, D., Shreve, S., Stochastic Optimal Control: The Discrete Time Case., Athena Scientific, Belmont, Massachusetts 1996. Zbl0633.93001MR0809588
- Blackwell, D., 10.1214/aoms/1177700285, Ann. Math. Statist. 36, (1965), 226-235. MR0173536DOI10.1214/aoms/1177700285
- Cani, J. De, 10.1287/mnsc.10.4.716, Management. Sci. 10 (1963), 716-733. MR0169690DOI10.1287/mnsc.10.4.716
- Drenyovszki, R., Kovács, L., Tornai, K., Oláh, A., I., I. Pintér, 10.14736/kyb-2017-6-1100, Kybernetika 53 (2017), 6, 1100-1117. DOI10.14736/kyb-2017-6-1100
- Dekker, R., Hordijk, A., 10.1007/bf02055581, Ann. Oper. Res. 28 (1991), 185-212. MR1105173DOI10.1007/bf02055581
- García, Y., González-Hernández, J., 10.14736/kyb-2016-3-0403, Kybernetika 52 (2016), 403-426. MR3532514DOI10.14736/kyb-2016-3-0403
- González-Hernández, J., López-Martínez, R., Pérez-Hernández, J., 10.1007/s00186-006-0092-2, Math. Meth. Oper. Res. 65 (2006), 27-44. Zbl1126.90075MR2302022DOI10.1007/s00186-006-0092-2
- González-Hernández, J., Villarreal-Rodríguez, C., Optimal solutions of constrained discounted semi-Markov control problems
- Hernández-Lerma, O., Lasserre, J., 10.1007/978-1-4612-0729-0_1, Springer-Verlag, New York 1996. Zbl0840.93001MR1363487DOI10.1007/978-1-4612-0729-0_1
- Hu, Q., Yue, W., 10.14736/kyb-2017-1-0059, Springer-Verlag, Advances in Mechanics and Mathematics book series 14, (2008). MR2361223DOI10.14736/kyb-2017-1-0059
- Huang, X., Huang, Y., 10.14736/kyb-2017-1-0059, Kybernetika 53 (2017), 1, 59-81. MR3638556DOI10.14736/kyb-2017-1-0059
- Howard, R., Semi-Markovian decision processes., Bull. Int. Statist. Inst. 40 (1963), 2, 625-652. MR0173545
- Jewell, W., 10.1287/opre.11.6.938, Oper. Res. 11 (1963), 938-971. MR0163375DOI10.1287/opre.11.6.938
- Luque-Vázquez, F., Hernández-Lerma, O., 10.4064/am-26-3-315-331, Appl. Math. 26 (1999), 315-331. MR1726636DOI10.4064/am-26-3-315-331
- Luque-Vásquez, F., Minjárez-Sosa, J. A., 10.1007/s001860400406, Math. Methods Oper. Res. 61 (2005), 455-468. MR2225824DOI10.1007/s001860400406
- Luque-Vásquez, F., Minjárez-Sosa, J., Rosas, L., 10.1007/s00245-009-9086-9, Appl. Math. Optim. 61, (2010), 317-336. MR2609593DOI10.1007/s00245-009-9086-9
- Schweitzer, P., Perturbation Theory and Markovian Decision Processes., Ph.D. Dissertation, Massachusetts Institute of Technology, 1965. MR2939613
- Vasicek, O., 10.1016/0304-405x(77)90016-2, J. Financ. Econom. 5 (1977), 177-188. DOI10.1016/0304-405x(77)90016-2
- Vega-Amaya, O., Average optimatily in semi-Markov control models on Borel spaces: unbounded costs and control., Bol. Soc. Mat. Mexicana 38 (1997), 2, 47-60. MR1313106
- Zagst, R., 10.1007/BF01432360, ZOR - Math. Methods Oper. Res. 41 (1995), 277-288. MR1339493DOI10.1007/BF01432360