Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes
Rajmund Drenyovszki; Lóránt Kovács; Kálmán Tornai; András Oláh; István Pintér
Kybernetika (2017)
- Volume: 53, Issue: 6, page 1100-1117
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDrenyovszki, Rajmund, et al. "Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes." Kybernetika 53.6 (2017): 1100-1117. <http://eudml.org/doc/294774>.
@article{Drenyovszki2017,
abstract = {In our paper we investigate the applicability of independent and identically distributed random sequences, first order Markov and higher order Markov chains as well as semi-Markov processes for bottom-up electricity load modeling. We use appliance time series from publicly available data sets containing fine grained power measurements. The comparison of models are based on metrics which are supposed to be important in power systems like Load Factor, Loss of Load Probability. Furthermore, we characterize the interdependence structure of the models with autocorrelation function as well. The aim of the investigation is to choose the most appropriate and the most parsimonious models for Smart Grid simulation purposes and applications like Demand Side Management and load scheduling. According to our results most appliance types can be modeled adequately with two states (on/off model) and the semi-Markov process can reproduce the properties of an aggregate load well compared to the original time series. With the price of more parameters of the semi-Markov model compared to identically distributed random sequence and first order Markov chain, it gives better results when the autocorrelation function, Loss of Load Probability and Load Factor are considered.},
author = {Drenyovszki, Rajmund, Kovács, Lóránt, Tornai, Kálmán, Oláh, András, Pintér, István},
journal = {Kybernetika},
keywords = {appliance modeling; bottom-up; Markov chain; semi-Markov process; smart grid},
language = {eng},
number = {6},
pages = {1100-1117},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes},
url = {http://eudml.org/doc/294774},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Drenyovszki, Rajmund
AU - Kovács, Lóránt
AU - Tornai, Kálmán
AU - Oláh, András
AU - Pintér, István
TI - Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 6
SP - 1100
EP - 1117
AB - In our paper we investigate the applicability of independent and identically distributed random sequences, first order Markov and higher order Markov chains as well as semi-Markov processes for bottom-up electricity load modeling. We use appliance time series from publicly available data sets containing fine grained power measurements. The comparison of models are based on metrics which are supposed to be important in power systems like Load Factor, Loss of Load Probability. Furthermore, we characterize the interdependence structure of the models with autocorrelation function as well. The aim of the investigation is to choose the most appropriate and the most parsimonious models for Smart Grid simulation purposes and applications like Demand Side Management and load scheduling. According to our results most appliance types can be modeled adequately with two states (on/off model) and the semi-Markov process can reproduce the properties of an aggregate load well compared to the original time series. With the price of more parameters of the semi-Markov model compared to identically distributed random sequence and first order Markov chain, it gives better results when the autocorrelation function, Loss of Load Probability and Load Factor are considered.
LA - eng
KW - appliance modeling; bottom-up; Markov chain; semi-Markov process; smart grid
UR - http://eudml.org/doc/294774
ER -
References
top- Ardakanian, O., Keshav, S., Rosenberg, C., 10.1145/2018536.2018544, In: Proc. 2nd ACM SIGCOMM Workshop on Green Betworking - GreenNets'11, 2011. DOI10.1145/2018536.2018544
- Aydinalp, M., Ugursal, V. I., Fung, A. S., 10.1016/s0306-2619(01)00049-6, Applied Energy 71 (2002), 87-110. DOI10.1016/s0306-2619(01)00049-6
- Berchtold, A., Raftery, A., 10.1214/ss/1042727943, Statist. Sci. 17 (2002), 328-356. MR1962488DOI10.1214/ss/1042727943
- Dickert, J., Schegner, P., Residential load models for network planning purposes., In: Proc. Modern Electric Power Systems 2010, Wroclaw, pp. 1-6.
- Drenyovszki, R., Kovacs, L., Pinter, I., Olah, A., Tornai, K., Levendovszky, J., 10.1109/energycon.2016.7514106, In: Proc. EnergyCon 2016, IEEE International Energy Conference, Leuven 2016. DOI10.1109/energycon.2016.7514106
- Grandjean, A., Adnot, J., Binet, G., 10.1016/j.rser.2012.08.013, Renewable and Sustainable Energy Reviews 16 (2012), 9, 6539-6565. DOI10.1016/j.rser.2012.08.013
- Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., Djurovic-Petrovic, M., 10.1016/j.buildenv.2010.01.021, Building and Environment 45 (2010), 1683-1697. DOI10.1016/j.buildenv.2010.01.021
- Kolter, J. Z., Johnson, M. J., REDD: A public data set for energy disaggregation research., In: Proc. SustKDD Workshop on Data Mining Applications in Sustainability, 2011.
- Kong, W., Dong, Z. Y., Hill, D. J., 10.1109/tsg.2016.2626389, IEEE Trans. Smart Grid PP (2016), 99, 1-1. DOI10.1109/tsg.2016.2626389
- Kovacs, L., Drenyovszki, R., Olah, A., Levendovszky, J., Tornai, K., Pinter, I., 10.17559/tv-20151021201400, Tehnicki Vjesnik - Tehnical Gazette 24 (2017), 1, 199-207. DOI10.17559/tv-20151021201400
- Monacchi, A., Egarter, D., Elmenreich, W., D'Alessandro, S., Tonello, A. M., 10.1109/smartgridcomm.2014.7007698, In: Proc. 5th IEEE International Conference on Smart Grid Communications (SmartGridComm 14), Venice 2014. DOI10.1109/smartgridcomm.2014.7007698
- Nijhuis, M., Gibescu, M., Cobben, J. F. G., 10.1016/j.enbuild.2015.12.004, Energy and Buildings 112 (2016), 121-129. DOI10.1016/j.enbuild.2015.12.004
- Paatero, J., Lund, P., 10.1002/er.1136, Int. J. Energy Research 30 (2006), 273-290. DOI10.1002/er.1136
- Palacio, S. N., Valentine, K. F., Wong, M., Zhang, K. M., 10.1016/j.apenergy.2014.04.089, Appl. Energy 129 (2014), 228-237. DOI10.1016/j.apenergy.2014.04.089
- Sancho-Tomas, A., Sumner, M., Robinson, D., 10.1016/j.enbuild.2016.10.044, Energy and Buildings 135 (2017), 350-366. DOI10.1016/j.enbuild.2016.10.044
- Schne, T., Jasko, Sz., Simon, Gy., Dynamic models of a home refrigerator., In: Proc. 5th International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (MACRo 2015), pp. 103-112.
- Sossan, F., Lakshmanan, V., Costanzo, G. T., Marinelli, M., Douglass, P. J., Bindner, H., 10.1016/j.segan.2015.10.003, Sustainable Energy, Grids and Networks 5 (2016), 1-12. DOI10.1016/j.segan.2015.10.003
- Stephen, B., Galloway, S., Burt, G., 10.1109/tsg.2014.2318375, IEEE Trans. Smart Grid 5 (2014), 5, 2432-2439. DOI10.1109/tsg.2014.2318375
- Strbac, G., 10.1016/j.enpol.2008.09.030, Energy Policy 36 (2008), 4419-4426. DOI10.1016/j.enpol.2008.09.030
- Swan, L. G., Ugursal, V. Ismet, 10.1016/j.rser.2008.09.033, Renewable Sustainable Energy Rev. 13 (2009), 1819-1835. DOI10.1016/j.rser.2008.09.033
- Zhang, Y., Chen, W., Gao, W., 10.1016/j.rser.2017.05.032, Renewable Sustainable Energy Rev. 79 (2017), 137-147. DOI10.1016/j.rser.2017.05.032
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.