Stochastic affine evolution equations with multiplicative fractional noise
Bohdan Maslowski; J. Šnupárková
Applications of Mathematics (2018)
- Volume: 63, Issue: 1, page 7-35
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMaslowski, Bohdan, and Šnupárková, J.. "Stochastic affine evolution equations with multiplicative fractional noise." Applications of Mathematics 63.1 (2018): 7-35. <http://eudml.org/doc/294566>.
@article{Maslowski2018,
abstract = {A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than $1/2$. Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.},
author = {Maslowski, Bohdan, Šnupárková, J.},
journal = {Applications of Mathematics},
keywords = {geometric fractional Brownian motion; stochastic differential equations in Hilbert space; stochastic bilinear equation},
language = {eng},
number = {1},
pages = {7-35},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic affine evolution equations with multiplicative fractional noise},
url = {http://eudml.org/doc/294566},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Maslowski, Bohdan
AU - Šnupárková, J.
TI - Stochastic affine evolution equations with multiplicative fractional noise
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 7
EP - 35
AB - A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than $1/2$. Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.
LA - eng
KW - geometric fractional Brownian motion; stochastic differential equations in Hilbert space; stochastic bilinear equation
UR - http://eudml.org/doc/294566
ER -
References
top- Alòs, E., Nualart, D., 10.1080/1045112031000078917, Stochastics Stochastics Rep. 75 (2002), 129-152. (2002) Zbl1028.60048MR1978896DOI10.1080/1045112031000078917
- Bártek, J., Garrido-Atienza, M. J., Maslowski, B., 10.1142/S021949371350010X, Stoch. Dyn. 13 (2013), Article ID 1350010, 33 pages. (2013) Zbl1291.35453MR3116928DOI10.1142/S021949371350010X
- Bonaccorsi, S., 10.1080/07362990008809673, Stochastic Anal. Appl. 18 (2000), 333-345. (2000) Zbl0959.60046MR1758177DOI10.1080/07362990008809673
- Prato, G. Da, Iannelli, M., Tubaro, L., An existence result for a linear abstract stochastic equation in Hilbert spaces, Rend. Sem. Mat. Univ. Padova 67 (1982), 171-180. (1982) Zbl0499.60061MR0682709
- Prato, G. Da, Iannelli, M., Tubaro, L., 10.1080/17442508208833210, Stochastics 6 (1982), 105-116. (1982) Zbl0475.60041MR0665246DOI10.1080/17442508208833210
- Prato, G. Da, Zabczyk, J., 10.1017/CBO9780511666223, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136DOI10.1017/CBO9780511666223
- Duncan, T. E., Maslowski, B., Pasik-Duncan, B., 10.1016/j.spa.2005.03.011, Stochastic Processes Appl. 115 (2005), 1357-1383. (2005) Zbl1076.60054MR2152379DOI10.1016/j.spa.2005.03.011
- Fernique, X., 10.1007/bfb0080190, Ec. d'Ete Probab. Saint-Flour IV-1974, Lect. Notes Math. 480 1-96 (1975), French. (1975) Zbl0331.60025MR0413238DOI10.1007/bfb0080190
- Flandoli, F., 10.1080/07362999208809262, Stochastic Anal. Appl. 10 (1992), 181-203. (1992) Zbl0762.60046MR1154534DOI10.1080/07362999208809262
- Garrido-Atienza, M. J., Maslowski, B., Šnupárková, J., 10.3934/dcdsb.2016088, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 3075-3094. (2016) Zbl1353.60059MR3567802DOI10.3934/dcdsb.2016088
- León, J. A., Nualart, D., 10.1214/aop/1022855415, Ann. Probab. 26 (1998), 149-186. (1998) Zbl0939.60066MR1617045DOI10.1214/aop/1022855415
- Mishura, Y. S., 10.1090/S0094-9000-04-00608-8, Theory Probab. Math. Statist. 68 (2004), 103-115 English. Ukrainian original translation from Teor. Ĭmovr. Mat. Stat. 68 2003 95-106. (2004) Zbl1050.60060MR2000399DOI10.1090/S0094-9000-04-00608-8
- Mishura, Y., Shevchenko, G., 10.1080/17442500802024892, Stochastics 80 (2008), 489-511. (2008) Zbl1154.60046MR2456334DOI10.1080/17442500802024892
- Nourdin, I., Peccati, G., 10.1017/CBO9781139084659, Cambridge Tracts in Mathematics 192, Cambridge University Press, Cambridge (2012). (2012) Zbl1266.60001MR2962301DOI10.1017/CBO9781139084659
- Nualart, D., 10.1007/978-1-4757-2437-0, Probability and Its Applications, Springer, New York (1995). (1995) Zbl0837.60050MR1344217DOI10.1007/978-1-4757-2437-0
- Nualart, D., 10.1090/conm/336, Stochastic Models. Seventh Symposium on Probability and Stochastic Processes, Mexico City 2002 Contemp. Math. 336, American Mathematical Society, Providence J. M. Gonzáles-Barrios et al. (2003), 3-39. (2003) Zbl1063.60080MR2037156DOI10.1090/conm/336
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44, Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Pérez-Abreu, V., Tudor, C., Multiple stochastic fractional integrals: a transfer principle for multiple stochastic fractional integrals, Bol. Soc. Mat. Mex., III. Ser. 8 (2002), 187-203. (2002) Zbl1020.60050MR1952159
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Šnupárková, J., Stochastic bilinear equations with fractional Gaussian noise in Hilbert space, Acta Univ. Carol., Math. Phys. 51 (2010), 49-67. (2010) Zbl1229.60073MR2828153
- Tanabe, H., Equations of Evolution, Monographs and Studies in Mathematics 6, Pitman, London (1979). (1979) Zbl0417.35003MR0533824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.