Stochastic affine evolution equations with multiplicative fractional noise

Bohdan Maslowski; J. Šnupárková

Applications of Mathematics (2018)

  • Volume: 63, Issue: 1, page 7-35
  • ISSN: 0862-7940

Abstract

top
A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than 1 / 2 . Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.

How to cite

top

Maslowski, Bohdan, and Šnupárková, J.. "Stochastic affine evolution equations with multiplicative fractional noise." Applications of Mathematics 63.1 (2018): 7-35. <http://eudml.org/doc/294566>.

@article{Maslowski2018,
abstract = {A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than $1/2$. Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.},
author = {Maslowski, Bohdan, Šnupárková, J.},
journal = {Applications of Mathematics},
keywords = {geometric fractional Brownian motion; stochastic differential equations in Hilbert space; stochastic bilinear equation},
language = {eng},
number = {1},
pages = {7-35},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stochastic affine evolution equations with multiplicative fractional noise},
url = {http://eudml.org/doc/294566},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Maslowski, Bohdan
AU - Šnupárková, J.
TI - Stochastic affine evolution equations with multiplicative fractional noise
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 7
EP - 35
AB - A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than $1/2$. Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.
LA - eng
KW - geometric fractional Brownian motion; stochastic differential equations in Hilbert space; stochastic bilinear equation
UR - http://eudml.org/doc/294566
ER -

References

top
  1. Alòs, E., Nualart, D., 10.1080/1045112031000078917, Stochastics Stochastics Rep. 75 (2002), 129-152. (2002) Zbl1028.60048MR1978896DOI10.1080/1045112031000078917
  2. Bártek, J., Garrido-Atienza, M. J., Maslowski, B., 10.1142/S021949371350010X, Stoch. Dyn. 13 (2013), Article ID 1350010, 33 pages. (2013) Zbl1291.35453MR3116928DOI10.1142/S021949371350010X
  3. Bonaccorsi, S., 10.1080/07362990008809673, Stochastic Anal. Appl. 18 (2000), 333-345. (2000) Zbl0959.60046MR1758177DOI10.1080/07362990008809673
  4. Prato, G. Da, Iannelli, M., Tubaro, L., An existence result for a linear abstract stochastic equation in Hilbert spaces, Rend. Sem. Mat. Univ. Padova 67 (1982), 171-180. (1982) Zbl0499.60061MR0682709
  5. Prato, G. Da, Iannelli, M., Tubaro, L., 10.1080/17442508208833210, Stochastics 6 (1982), 105-116. (1982) Zbl0475.60041MR0665246DOI10.1080/17442508208833210
  6. Prato, G. Da, Zabczyk, J., 10.1017/CBO9780511666223, Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136DOI10.1017/CBO9780511666223
  7. Duncan, T. E., Maslowski, B., Pasik-Duncan, B., 10.1016/j.spa.2005.03.011, Stochastic Processes Appl. 115 (2005), 1357-1383. (2005) Zbl1076.60054MR2152379DOI10.1016/j.spa.2005.03.011
  8. Fernique, X., 10.1007/bfb0080190, Ec. d'Ete Probab. Saint-Flour IV-1974, Lect. Notes Math. 480 1-96 (1975), French. (1975) Zbl0331.60025MR0413238DOI10.1007/bfb0080190
  9. Flandoli, F., 10.1080/07362999208809262, Stochastic Anal. Appl. 10 (1992), 181-203. (1992) Zbl0762.60046MR1154534DOI10.1080/07362999208809262
  10. Garrido-Atienza, M. J., Maslowski, B., Šnupárková, J., 10.3934/dcdsb.2016088, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 3075-3094. (2016) Zbl1353.60059MR3567802DOI10.3934/dcdsb.2016088
  11. León, J. A., Nualart, D., 10.1214/aop/1022855415, Ann. Probab. 26 (1998), 149-186. (1998) Zbl0939.60066MR1617045DOI10.1214/aop/1022855415
  12. Mishura, Y. S., 10.1090/S0094-9000-04-00608-8, Theory Probab. Math. Statist. 68 (2004), 103-115 English. Ukrainian original translation from Teor. Ĭmovr. Mat. Stat. 68 2003 95-106. (2004) Zbl1050.60060MR2000399DOI10.1090/S0094-9000-04-00608-8
  13. Mishura, Y., Shevchenko, G., 10.1080/17442500802024892, Stochastics 80 (2008), 489-511. (2008) Zbl1154.60046MR2456334DOI10.1080/17442500802024892
  14. Nourdin, I., Peccati, G., 10.1017/CBO9781139084659, Cambridge Tracts in Mathematics 192, Cambridge University Press, Cambridge (2012). (2012) Zbl1266.60001MR2962301DOI10.1017/CBO9781139084659
  15. Nualart, D., 10.1007/978-1-4757-2437-0, Probability and Its Applications, Springer, New York (1995). (1995) Zbl0837.60050MR1344217DOI10.1007/978-1-4757-2437-0
  16. Nualart, D., 10.1090/conm/336, Stochastic Models. Seventh Symposium on Probability and Stochastic Processes, Mexico City 2002 Contemp. Math. 336, American Mathematical Society, Providence J. M. Gonzáles-Barrios et al. (2003), 3-39. (2003) Zbl1063.60080MR2037156DOI10.1090/conm/336
  17. Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44, Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
  18. Pérez-Abreu, V., Tudor, C., Multiple stochastic fractional integrals: a transfer principle for multiple stochastic fractional integrals, Bol. Soc. Mat. Mex., III. Ser. 8 (2002), 187-203. (2002) Zbl1020.60050MR1952159
  19. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  20. Šnupárková, J., Stochastic bilinear equations with fractional Gaussian noise in Hilbert space, Acta Univ. Carol., Math. Phys. 51 (2010), 49-67. (2010) Zbl1229.60073MR2828153
  21. Tanabe, H., Equations of Evolution, Monographs and Studies in Mathematics 6, Pitman, London (1979). (1979) Zbl0417.35003MR0533824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.