Approximation properties for modified -Bernstein-Durrmeyer operators
Mohammad Mursaleen; Ahmed A. H. Alabied
Mathematica Bohemica (2018)
- Volume: 143, Issue: 2, page 173-188
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMursaleen, Mohammad, and Alabied, Ahmed A. H.. "Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators." Mathematica Bohemica 143.2 (2018): 173-188. <http://eudml.org/doc/294575>.
@article{Mursaleen2018,
abstract = {We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators $\{D\}_\{n,p,q\}^\{\ast \}$ and compute the rate of convergence for the function $f$ belonging to the class $\{\rm Lip\}_\{M\}(\gamma )$.},
author = {Mursaleen, Mohammad, Alabied, Ahmed A. H.},
journal = {Mathematica Bohemica},
keywords = {$(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem},
language = {eng},
number = {2},
pages = {173-188},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators},
url = {http://eudml.org/doc/294575},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Mursaleen, Mohammad
AU - Alabied, Ahmed A. H.
TI - Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 173
EP - 188
AB - We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$.
LA - eng
KW - $(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
UR - http://eudml.org/doc/294575
ER -
References
top- Acar, T., 10.1016/j.amc.2015.04.060, Appl. Math. Comput. 263 (2015), 233-239. (2015) MR3348539DOI10.1016/j.amc.2015.04.060
- Acar, T., 10.1002/mma.3721, Math. Methods Appl. Sci. 39 (2016), 2685-2695. (2016) Zbl1342.41019MR3512775DOI10.1002/mma.3721
- Acar, T., Aral, A., Mohiuddine, S. A., 10.1007/s40995-016-0045-4, (to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages. MR3806171DOI10.1007/s40995-016-0045-4
- Acar, T., Aral, A., Mohiuddine, S. A., 10.1186/s13660-016-1045-9, J. Inequal. Appl. 2016 (2016), Paper No. 98, 14 pages. (2016) Zbl1333.41007MR3479372DOI10.1186/s13660-016-1045-9
- Acar, T., Ulusoy, G., 10.1007/s10998-015-0091-2, Period. Math. Hung. 72 (2016), 64-75. (2016) MR3470805DOI10.1007/s10998-015-0091-2
- Altomare, F., Campiti, M., 10.1515/9783110884586, de Gruyter Studies in Mathematics 17, Walter de Gruyter & Co., Berlin (1994). (1994) Zbl0924.41001MR1292247DOI10.1515/9783110884586
- Cai, Q. B., Zhou, G., 10.1016/j.amc.2015.12.006, Appl. Math. Comput. 276 (2016), 12-20. (2016) MR3451993DOI10.1016/j.amc.2015.12.006
- Chakrabarti, R., Jagannathan, R., 10.1088/0305-4470/24/13/002, J. Phys. A, Math. Gen. 24 (1991), L711--L718. (1991) Zbl0735.17026MR1116019DOI10.1088/0305-4470/24/13/002
- Gupta, V., 10.1016/j.amc.2007.07.056, Appl. Math. Comput. 197 (2008), 172-178. (2008) Zbl1142.41008MR2396302DOI10.1016/j.amc.2007.07.056
- Hounkonnou, M.N., Kyemba, J. D. B., -calculus: differentiation and integration, SUT J. Math. 49 (2013), 145-167. (2013) Zbl06308085MR3222506
- Korovkin, P. P., Linear Operators and Approximation Theory, Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960). (1960) Zbl0094.10201MR0150565
- Lupaş, A., A -analogue of the Bernstein operator, Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92. (1987) Zbl0684.41014MR0956939
- Milovanović, G. V., Gupta, V., Malik, N., 10.1007/s40590-016-0139-1, (to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages. (2016) MR3773107DOI10.1007/s40590-016-0139-1
- Mursaleen, M., Alotaibi, A., Ansari, K. J., 10.1155/2016/1035253, J. Funct. Spaces 2016 (2016), Article ID 1035253, 9 pages. (2016) Zbl1337.41011MR3459656DOI10.1155/2016/1035253
- Mursaleen, M., Ansari, K. J., Khan, A., 10.1016/j.amc.2015.03.135, Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746. (2015) MR3351620DOI10.1016/j.amc.2015.03.135
- Mursaleen, M., Ansari, K. J., Khan, A., 10.1016/j.amc.2015.04.090, Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71. (2015) MR3377604DOI10.1016/j.amc.2015.04.090
- Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J., 10.2298/FIL1603639M, Filomat 30 (2016), 639-648. (2016) MR3498662DOI10.2298/FIL1603639M
- Mursaleen, M., Nasiuzzaman, Md., Nurgali, A., 10.1186/s13660-015-0767-4, J. Inequal. Appl. 2015 (2015), Paper No. 249, 12 pages. (2015) Zbl1334.41036MR3382856DOI10.1186/s13660-015-0767-4
- Mursaleen, M., Sarsenbi, A. M., Khan, T., 10.1186/s13660-016-1128-7, J. Inequal. Appl. 2016 (2016), Paper No. 190, 15 pages. (2016) Zbl1347.41029MR3532366DOI10.1186/s13660-016-1128-7
- Phillips, G. M., Bernstein polynomials based on the -integers, Ann. Numer. Math. 4 (1997), 511-518. (1997) Zbl0881.41008MR1422700
- Sharma, H., 10.1186/2251-7456-6-24, Math. Sci., Springer (electronic only) 6 (2012), Paper No. 24, 6 pages. (2012) Zbl1264.41017MR3002753DOI10.1186/2251-7456-6-24
- Sharma, H., 10.1007/s40065-016-0152-2, Arab. J. Math. 5 (2016), 239-248. (2016) Zbl06682028MR3570370DOI10.1007/s40065-016-0152-2
- Sharma, H., Gupta, C., 10.1007/s40574-015-0038-9, Boll. Unione Mat. Ital. 8 (2015), 213-222. (2015) Zbl1331.41030MR3425421DOI10.1007/s40574-015-0038-9
- Ulusoy, G., Acar, T., 10.1002/mma.3784, Math. Methods Appl. Sci. 39 (2016), 3391-3401. (2016) Zbl1347.41030MR3521262DOI10.1002/mma.3784
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.