Displaying similar documents to “Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators”

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Siciak’s extremal function via Bernstein and Markov constants for compact sets in N

Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper is concerned with the best constants in the Bernstein and Markov inequalities on a compact set E N . We give some basic properties of these constants and we prove that two extremal-like functions defined in terms of the Bernstein constants are plurisubharmonic and very close to the Siciak extremal function Φ E . Moreover, we show that one of these extremal-like functions is equal to Φ E if E is a nonpluripolar set with l i m n M ( E ) 1 / n = 1 where M ( E ) : = s u p | | | g r a d P | | | E / | | P | | E , the supremum is taken over all polynomials P of N variables...

Compact operators whose adjoints factor through subspaces of l p

Deba P. Sinha, Anil K. Karn (2002)

Studia Mathematica

Similarity:

For p ≥ 1, a subset K of a Banach space X is said to be relatively p-compact if K n = 1 α x : α B a l l ( l p ' ) , where p’ = p/(p-1) and x l p s ( X ) . An operator T ∈ B(X,Y) is said to be p-compact if T(Ball(X)) is relatively p-compact in Y. Similarly, weak p-compactness may be defined by considering x l p w ( X ) . It is proved that T is (weakly) p-compact if and only if T* factors through a subspace of l p in a particular manner. The normed operator ideals ( K p , κ p ) of p-compact operators and ( W p , ω p ) of weakly p-compact operators, arising from these factorizations,...

Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina, Berardino Sciunzi, Enrico Valdinoci (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct...

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner (2006)

Colloquium Mathematicae

Similarity:

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

Best approximation in spaces of bounded linear operators

Grzegorz Lewicki

Similarity:

CONTENTSChapter 0...............................................................................................................................................................................5   0.1. Introduction..................................................................................................................................................................5   0.2. Preliminary results.......................................................................................................................................................9Chapter...

On the multiples of a badly approximable vector

Yann Bugeaud (2015)

Acta Arithmetica

Similarity:

Let d be a positive integer and α a real algebraic number of degree d + 1. Set α ̲ : = ( α , α ² , . . . , α d ) . It is well-known that c ( α ̲ ) : = l i m i n f q q 1 / d · | | q α ̲ | | > 0 , where ||·|| denotes the distance to the nearest integer. Furthermore, c ( α ̲ ) n - 1 / d c ( n α ̲ ) n c ( α ̲ ) for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that c ( n α ̲ ) C n - 1 / d for any integer n ≥ 1.

Rational approximation to real points on conics

Damien Roy (2013)

Annales de l’institut Fourier

Similarity:

A point ( ξ 1 , ξ 2 ) with coordinates in a subfield of of transcendence degree one over , with 1 , ξ 1 , ξ 2 linearly independent over , may have a uniform exponent of approximation by elements of 2 that is strictly larger than the lower bound 1 / 2 given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola { ( ξ , ξ 2 ) ; ξ } . The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest...

Three-space problems for the approximation property

A. Szankowski (2009)

Journal of the European Mathematical Society

Similarity:

It is shown that there is a subspace Z q of q for 1 < q < 2 which is isomorphic to q such that q / Z q does not have the approximation property. On the other hand, for 2 < p < there is a subspace Y p of p such that Y p does not have the approximation property (AP) but the quotient space p / Y p is isomorphic to p . The result is obtained by defining random “Enflo-Davie spaces” Y p which with full probability fail AP for all 2 < p and have AP for all 1 p 2 . For 1 < p 2 , Y p are isomorphic to p .

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

On hyponormal operators in Krein spaces

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, Boris Lora Castro (2019)

Archivum Mathematicum

Similarity:

In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Similarity:

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider...

On Bernstein inequalities for multivariate trigonometric polynomials in L p , 0 p

Laiyi Zhu, Xingjun Zhao (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕋 n be the space of all trigonometric polynomials of degree not greater than n with complex coefficients. Arestov extended the result of Bernstein and others and proved that ( 1 / n ) T n ' p T n p for 0 p and T n 𝕋 n . We derive the multivariate version of the result of Golitschek and Lorentz T n cos α + 1 n T n sin α l ( m ) p T n p , 0 p for all trigonometric polynomials (with complex coeffcients) in m variables of degree at most n .

Approximation properties of β-expansions

Simon Baker (2015)

Acta Arithmetica

Similarity:

Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence ( ϵ i ) i = 1 0 , 1 a β-expansion for x if x = i = 1 ϵ i β - i . We call a finite sequence ( ϵ i ) i = 1 n 0 , 1 n an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given Ψ : 0 , we introduce the following subset of ℝ: W β ( Ψ ) : = m = 1 n = m ( ϵ i ) i = 1 n 0 , 1 n [ i = 1 n ( ϵ i ) / ( β i ) , i = 1 n ( ϵ i ) / ( β i ) + Ψ ( n ) ] In other words, W β ( Ψ ) is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities 0 x - i = 1 n ( ϵ i ) / ( β i ) Ψ ( n ) . When n = 1 2 n Ψ ( n ) < , the Borel-Cantelli lemma tells us that the Lebesgue measure...

Around the Littlewood conjecture in Diophantine approximation

Yann Bugeaud (2014)

Publications mathématiques de Besançon

Similarity:

The Littlewood conjecture in Diophantine approximation claims that inf q 1 q · q α · q β = 0 holds for all real numbers α and β , where · denotes the distance to the nearest integer. Its p -adic analogue, formulated by de Mathan and Teulié in 2004, asserts that inf q 1 q · q α · | q | p = 0 holds for every real number α and every prime number p , where | · | p denotes the p -adic absolute value normalized by | p | p = p - 1 . We survey the known results on these conjectures and highlight recent developments. ...

Simultaneous solutions of operator Sylvester equations

Sang-Gu Lee, Quoc-Phong Vu (2014)

Studia Mathematica

Similarity:

We consider simultaneous solutions of operator Sylvester equations A i X - X B i = C i (1 ≤ i ≤ k), where ( A , . . . , A k ) and ( B , . . . , B k ) are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and ( C , . . . , C k ) is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of ( A , . . . , A k ) and ( B , . . . , B k ) do not intersect, then this system of Sylvester equations has a unique simultaneous solution.

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.

Multiplication operators on L ( L p ) and p -strictly singular operators

William Johnson, Gideon Schechtman (2008)

Journal of the European Mathematical Society

Similarity:

A classification of weakly compact multiplication operators on L ( L p ) , 1<p< , i s g i v e n . T h i s a n s w e r s a q u e s t i o n r a i s e d b y S a k s m a n a n d T y l l i i n 1992 . T h e c l a s s i f i c a t i o n i n v o l v e s t h e c o n c e p t o f p - s t r i c t l y s i n g u l a r o p e r a t o r s , a n d w e a l s o i n v e s t i g a t e t h e s t r u c t u r e o f g e n e r a l p - s t r i c t l y s i n g u l a r o p e r a t o r s o n Lp . T h e m a i n r e s u l t i s t h a t i f a n o p e r a t o r T o n Lp , 1<p<2 , i s p - s t r i c t l y s i n g u l a r a n d T|X i s a n i s o m o r p h i s m f o r s o m e s u b s p a c e X o f Lp , t h e n X e m b e d s i n t o Lr f o r a l l r<2 , b u t X n e e d n o t b e i s o m o r p h i c t o a H i l b e r t s p a c e . It is also shown that if T is convolution by a biased coin on L p of the Cantor group, 1 p < 2 , and T | X is an isomorphism for some reflexive subspace X of L p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

An approximation property of quadratic irrationals

Takao Komatsu (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let α &gt; 1 be irrational. Several authors studied the numbers m ( α ) = inf { | y | : y Λ m , y 0 } , where m is a positive integer and Λ m denotes the set of all real numbers of the form y = ϵ 0 α n + ϵ 1 α n - 1 + + ϵ n - 1 α + ϵ n with restricted integer coefficients | ϵ i | m . The value of 1 ( α ) was determined for many particular Pisot numbers and m ( α ) for the golden number. In this paper the value of  m ( α ) is determined for irrational numbers  α , satisfying α 2 = a α ± 1 with a positive integer a .

A Note on Sectorial and R-Sectorial Operators

Alberto Venni (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

The following results are proved: (i) if α , β + and A is a sectorial operator, then the set { t α A β ( t + A ) ; t > 0 } is bounded; (ii) the same set of operators is R-bounded if A is R-sectorial.

The ideal of p-compact operators: a tensor product approach

Daniel Galicer, Silvia Lassalle, Pablo Turco (2012)

Studia Mathematica

Similarity:

We study the space of p-compact operators, p , using the theory of tensor norms and operator ideals. We prove that p is associated to / d p , the left injective associate of the Chevet-Saphar tensor norm d p (which is equal to g p ' ' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that p ( E ; F ) is equal to q ( E ; F ) for a wide range of values of p and q, and show that our results...