Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 953-965
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRen, Bin, and Zhu, Lin Sheng. "Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center." Czechoslovak Mathematical Journal 67.4 (2017): 953-965. <http://eudml.org/doc/294583>.
@article{Ren2017,
abstract = {A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.},
author = {Ren, Bin, Zhu, Lin Sheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {related set; basis; derivation},
language = {eng},
number = {4},
pages = {953-965},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center},
url = {http://eudml.org/doc/294583},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Ren, Bin
AU - Zhu, Lin Sheng
TI - Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 953
EP - 965
AB - A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.
LA - eng
KW - related set; basis; derivation
UR - http://eudml.org/doc/294583
ER -
References
top- Ancochea-Bermudez, J. M., Goze, M., 10.1007/BF01193621, Arch. Math. 50 (1988), 511-525 French. (1988) Zbl0628.17005MR0948265DOI10.1007/BF01193621
- Ancochea-Bermudez, J. M., Goze, M., 10.1007/BF01191272, Arch. Math. 52 (1989), 175-185 French. (1989) Zbl0672.17005MR0985602DOI10.1007/BF01191272
- Galitski, L. Y., Timashev, D. A., On classification of metabelian Lie algebras, J. Lie Theory 9 (1999), 125-156. (1999) Zbl0923.17015MR1680007
- Gauger, M. A., 10.2307/1996506, Trans. Am. Math. Soc. 179 (1973), 293-329. (1973) Zbl0267.17015MR0325719DOI10.2307/1996506
- Gong, M.-P., Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R), Ph.D. Thesis, University of Waterloo, Waterloo (1998). (1998) MR2698220
- Goze, M., Khakimdjanov, Y., 10.1007/978-94-017-2432-6, Mathematics and Its Applications 361, Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0845.17012MR1383588DOI10.1007/978-94-017-2432-6
- Goze, M., Remm, E., 10.1515/gmj-2015-0022, Georgian Math. J. 22 (2015), 219-234. (2015) Zbl06458841MR3353570DOI10.1515/gmj-2015-0022
- Khuhirun, B., Misra, K. C., Stitzinger, E., 10.1016/j.jalgebra.2015.07.036, J. Algebra 444 (2015), 328-338. (2015) Zbl1358.17013MR3406181DOI10.1016/j.jalgebra.2015.07.036
- Leger, G., Luks, E., 10.1017/s0027763000014525, Nagoya Math. J. 44 (1971), 39-50. (1971) Zbl0264.17003MR0297828DOI10.1017/s0027763000014525
- Remm, E., 10.1080/00927872.2016.1233238, Commun. Algebra 45 (2017), 2956-2966. (2017) MR3594570DOI10.1080/00927872.2016.1233238
- Ren, B., Meng, D. J., Some completable 2-step nilpotent Lie algebras I, Linear Algebra Appl. 338 (2001), 77-98. (2001) Zbl0992.17005MR1860314
- Ren, B., Zhou, L. S., 10.1080/00927872.2010.483342, Commun. Algebra 39 (2011), 2068-2081. (2011) Zbl1290.17004MR2813164DOI10.1080/00927872.2010.483342
- Revoy, P., 10.5802/afst.547, Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. (1980) Zbl0447.17007MR0595192DOI10.5802/afst.547
- Santharoubane, L. J., 10.4153/CJM-1982-084-5, Can. J. Math. 34 (1982), 1215-1239. (1982) Zbl0495.17011MR0678665DOI10.4153/CJM-1982-084-5
- Seeley, C., 10.2307/2154390, Trans. Am. Math. Soc. 335 (1993), 479-496. (1993) Zbl0770.17003MR1068933DOI10.2307/2154390
- Umlauf, K. A., Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Ph.D. Thesis, University of Leipzig, Leipzig German (1891). (1891)
- Yan, Z., Deng, S., 10.1007/s10587-013-0057-6, Czech. Math. J. 63 (2013), 847-863. (2013) Zbl1291.17013MR3125659DOI10.1007/s10587-013-0057-6
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.