The variety of dual mock-Lie algebras
Luisa M. Camacho; Ivan Kaygorodov; Viktor Lopatkin; Mohamed A. Salim
Communications in Mathematics (2020)
- Volume: 28, Issue: 2, page 161-178
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topCamacho, Luisa M., et al. "The variety of dual mock-Lie algebras." Communications in Mathematics 28.2 (2020): 161-178. <http://eudml.org/doc/297083>.
@article{Camacho2020,
abstract = {We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.},
author = {Camacho, Luisa M., Kaygorodov, Ivan, Lopatkin, Viktor, Salim, Mohamed A.},
journal = {Communications in Mathematics},
keywords = {Nilpotent algebra; mock-Lie algebra; dual mock-Lie algebra; anticommutative algebra; algebraic classification; geometric classification; central extension; degeneration},
language = {eng},
number = {2},
pages = {161-178},
publisher = {University of Ostrava},
title = {The variety of dual mock-Lie algebras},
url = {http://eudml.org/doc/297083},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Camacho, Luisa M.
AU - Kaygorodov, Ivan
AU - Lopatkin, Viktor
AU - Salim, Mohamed A.
TI - The variety of dual mock-Lie algebras
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 161
EP - 178
AB - We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.
LA - eng
KW - Nilpotent algebra; mock-Lie algebra; dual mock-Lie algebra; anticommutative algebra; algebraic classification; geometric classification; central extension; degeneration
UR - http://eudml.org/doc/297083
ER -
References
top- Abdelwahab, H., Calderón, A.J., Kaygorodov, I., 10.1142/S0218196719500437, International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, (2019) MR3996987DOI10.1142/S0218196719500437
- Alvarez, M.A., 10.1142/S100538671800024X, Algebra Colloquium, 25, 02, 2018, 349-360, (2018) MR3805328DOI10.1142/S100538671800024X
- Alvarez, M.A., The variety of -dimensional -step nilpotent Lie algebras, Symmetry, 10, 1, 2018, 26, Multidisciplinary Digital Publishing Institute, (2018)
- Burde, D., Fialowski, A., Jacobi--Jordan algebras, Linear Algebra and its Applications, 459, 2014, 586-594, Elsevier, (2014) MR3247244
- Burde, D., Steinhoff, C., 10.1006/jabr.1998.7714, Journal of Algebra, 214, 2, 1999, 729-739, Academic Press, (1999) MR1680532DOI10.1006/jabr.1998.7714
- Cicalò , S., Graaf, W. De, Schneider, C., 10.1016/j.laa.2011.06.037, Linear Algebra and its Applications, 436, 1, 2012, 163-189, Elsevier, (2012) MR2859920DOI10.1016/j.laa.2011.06.037
- Darijani, I., Usefi, H., 10.1016/j.jalgebra.2016.06.011, Journal of Algebra, 464, 2016, 97-140, Elsevier, (2016) MR3533425DOI10.1016/j.jalgebra.2016.06.011
- Graaf, W.A. De, 10.1016/j.jalgebra.2006.08.006, Journal of Algebra, 309, 2, 2007, 640-653, Elsevier, (2007) MR2303198DOI10.1016/j.jalgebra.2006.08.006
- Graaf, W.A. De, Classification of nilpotent associative algebras of small dimension, International Journal of Algebra and Computation, 28, 01, 2018, 133-161, World Scientific, (2018) MR3768261
- Ouaridi, A. Fernandez, Kaygorodov, I., Khrypchenko, M., Yu. Volkov, Degenerations of nilpotent algebras, arXiv:1905.05361.
- Gorshkov, I., Kaygorodov, I., Khrypchenko, M., 10.1080/00927872.2019.1635612, Communications in Algebra, 48, 1, 2020, 204-209, Taylor & Francis, (2020) MR4060024DOI10.1080/00927872.2019.1635612
- Grunewald, F., O'Halloran, J., 10.1016/0021-8693(88)90093-2, Journal of Algebra, 112, 2, 1988, 315-325, Academic Press, (1988) MR0926608DOI10.1016/0021-8693(88)90093-2
- Grunewald, F., O'Halloran, J., 10.1016/0021-8693(88)90199-8, Journal of Algebra, 116, 1, 1988, 163-175, Elsevier, (1988) MR0944153DOI10.1016/0021-8693(88)90199-8
- Hegazi, A.S., Abdelwahab, H., 10.1016/j.laa.2016.01.015, Linear Algebra and its Applications, 494, 2016, 165-218, Elsevier, (2016) MR3455692DOI10.1016/j.laa.2016.01.015
- Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderon, 10.1016/j.laa.2016.04.029, Linear Algebra and its Applications, 505, 2016, 32-56, Elsevier, (2016) MR3506483DOI10.1016/j.laa.2016.04.029
- Ismailov, N., Kaygorodov, I., Mashurov, F., 10.1007/s10468-019-09935-y, Algebras and Representation Theory, 2020, 14 pp, Springer, DOI: 10.1007/s10468-019-09935-y. (2020) MR4207393DOI10.1007/s10468-019-09935-y
- Ismailov, N., Kaygorodov, I., Yu. Volkov, 10.1142/S0129167X18500350, International Journal of Mathematics, 29, 05, 2018, Article 1850035, World Scientific, (2018) MR3808051DOI10.1142/S0129167X18500350
- Ismailov, N., Kaygorodov, I., Yu. Volkov, 10.4153/S0008439519000018, Canadian Mathematical Bulletin, 62, 3, 2019, 539-549, Canadian Mathematical Society, (2019) MR3998738DOI10.4153/S0008439519000018
- Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A., 10.1016/j.geomphys.2019.04.016, Journal of Geometry and Physics, 143, 2019, 11-21, Elsevier, (2019) MR3954151DOI10.1016/j.geomphys.2019.04.016
- Kaygorodov, I., Khrypchenko, M., Lopes, S., The algebraic and geometric classification of nilpotent anticommutative algebras, Journal of Pure and Applied Algebra, 224, 8, 2020, Article 106337, (2020) MR4074577
- Kaygorodov, I., Yu. Popov, Yu. Volkov, 10.1080/00927872.2018.1459647, Communications in Algebra, 46, 11, 2018, 4928-4940, Taylor & Francis, (2018) MR3864274DOI10.1080/00927872.2018.1459647
- Kaygorodov, I., Yu. Volkov, 10.4153/S0008414X18000056, Canadian Journal of Mathematics, 71, 4, 2019, 819-842, Canadian Mathematical Society, (2019) MR3984022DOI10.4153/S0008414X18000056
- Kaygorodov, I., Yu. Volkov, 10.17323/1609-4514-2019-19-3-485-521, Moscow Mathematical Journal, 19, 3, 2019, 485-521, (2019) MR3993005DOI10.17323/1609-4514-2019-19-3-485-521
- Okubo, S., Kamiya, N., 10.1006/jabr.1997.7144, Journal of Algebra, 198, 2, 1997, 388-411, Elsevier, (1997) MR1489904DOI10.1006/jabr.1997.7144
- Ren, B., Zhu, L.S., 10.21136/CMJ.2017.0253-16, Czechoslovak Mathematical Journal, 67, 4, 2017, 953-965, Springer, (2017) MR3736011DOI10.21136/CMJ.2017.0253-16
- Seeley, C., 10.1080/00927879008824088, Communications in Algebra, 18, 10, 1990, 3493-3505, Taylor & Francis, (1990) MR1063991DOI10.1080/00927879008824088
- Skjelbred, T., Sund, T., Sur la classification des algèbres de Lie nilpotentes, Comptes rendus de l'Académie des Sciences, 286, 5, 1978, A241-A242, (1978) MR0498734
- Zhevlakov, K.A., Solvability and nilpotency of Jordan rings, Algebra i Logika, 5, 3, 1966, 37-58, (1966) MR0207786
- Zusmanovich, P., 10.1090/S0002-9947-1992-1069751-2, Transactions of the American Mathematical Society, 334, 1, 1992, 143-152, (1992) MR1069751DOI10.1090/S0002-9947-1992-1069751-2
- Zusmanovich, P., 10.1016/j.laa.2016.12.029, Linear Algebra and its Applications, 518, 2017, 79-96, Elsevier, (2017) MR3598575DOI10.1016/j.laa.2016.12.029
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.