Oscillation theorems for third order nonlinear delay difference equations

Kumar S. Vidhyaa; Chinnappa Dharuman; Ethiraju Thandapani; Sandra Pinelas

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 1, page 25-37
  • ISSN: 0862-7959

Abstract

top
Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form Δ ( a n ( Δ ( b n ( Δ y n ) α ) ) ) + q n f ( y σ ( n ) ) = 0 to have property ( A ) or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.

How to cite

top

Vidhyaa, Kumar S., et al. "Oscillation theorems for third order nonlinear delay difference equations." Mathematica Bohemica 144.1 (2019): 25-37. <http://eudml.org/doc/294592>.

@article{Vidhyaa2019,
abstract = {Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form \[ \Delta (a\_n(\Delta (b\_n(\Delta y\_n)^\{\alpha \})))+q\_nf(y\_\{\sigma (n)\})=0 \] to have property $\{(\rm A)\}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.},
author = {Vidhyaa, Kumar S., Dharuman, Chinnappa, Thandapani, Ethiraju, Pinelas, Sandra},
journal = {Mathematica Bohemica},
keywords = {third order delay difference equation; property $\{(\rm A)\}$; comparison theorem},
language = {eng},
number = {1},
pages = {25-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation theorems for third order nonlinear delay difference equations},
url = {http://eudml.org/doc/294592},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Vidhyaa, Kumar S.
AU - Dharuman, Chinnappa
AU - Thandapani, Ethiraju
AU - Pinelas, Sandra
TI - Oscillation theorems for third order nonlinear delay difference equations
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 25
EP - 37
AB - Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form \[ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 \] to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
LA - eng
KW - third order delay difference equation; property ${(\rm A)}$; comparison theorem
UR - http://eudml.org/doc/294592
ER -

References

top
  1. Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods and Applications, Pure and Applied Mathematics 228. Marcel Dekker, NewYork (2000). (2000) Zbl0952.39001MR1740241
  2. Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., Discrete Oscillation Theory, Hindawi Publishing, New York (2005). (2005) Zbl1084.39001MR2179948
  3. Agarwal, R. P., Grace, S. R., 10.1016/S0898-1221(01)00162-6, Comput. Math. Appl. 42 (2001), 379-384. (2001) Zbl1003.39006MR1837999DOI10.1016/S0898-1221(01)00162-6
  4. Agarwal, R. P., Grace, S. R., O'Regan, D., 10.1155/ADE.2005.345, Adv. Difference Equ. 2005 (2005), 345-367. (2005) Zbl1107.39004MR2201689DOI10.1155/ADE.2005.345
  5. Alzabut, J., Bolat, Y., 10.1007/s10013-014-0106-y, Vietnam J. Math. 43 (2015), 583-594. (2015) Zbl1326.39008MR3386063DOI10.1007/s10013-014-0106-y
  6. Artzrouni, M., 10.1007/BF00276233, J. Math. Biol. 21 (1985), 363-381. (1985) Zbl0567.92013MR0804157DOI10.1007/BF00276233
  7. Bolat, Y., Alzabut, J., On the oscillation of higher-order half-linear delay difference equations, Appl. Math. Inf. Sci. 6 (2012), 423-427. (2012) MR2970650
  8. Bolat, Y., Alzabut, J., 10.1155/2014/791631, Int. J. Differ. Equ. 2014 (2014), Article ID 791631, 6 pages. (2014) Zbl1291.39032MR3214492DOI10.1155/2014/791631
  9. Došlá, Z., Kobza, A., 10.1016/j.camwa.2003.05.008, Comput. Math. Appl. 48 (2004), 191-200. (2004) Zbl1068.39006MR2086796DOI10.1016/j.camwa.2003.05.008
  10. Došlá, Z., Kobza, A., 10.1155/ADE/2006/65652, Adv. Difference Equ. (2006), Article ID 65652, 13 pages. (2006) Zbl1133.39007MR2209669DOI10.1155/ADE/2006/65652
  11. Grace, S. R., Agarwal, R. P., Graef, J. R., 10.2298/AADM0901027G, Appl. Anal. Discrete Math. 3 (2009), 27-38. (2009) Zbl1224.39016MR2499304DOI10.2298/AADM0901027G
  12. Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. (1999) Zbl1141.39301MR1745309
  13. Saker, S. H., Alzabut, J. O., Oscillatory behavior of third order nonlinear difference equations with delayed argument, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 707-723. (2010) Zbl1215.39015MR2767893
  14. Saker, S. H., Alzabut, J. O., Mukheimer, A., 10.14232/ejqtde.2010.1.67, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 67, 16 pages. (2010) Zbl1208.39019MR2735028DOI10.14232/ejqtde.2010.1.67
  15. Smith, B., 10.1216/RMJ-1987-17-3-597, Rocky Mt. J. Math. 17 (1987), 597-606. (1987) Zbl0632.39002MR0908266DOI10.1216/RMJ-1987-17-3-597
  16. B. Smith, W. E. Taylor, Jr., Nonlinear third-order difference equation: Oscillatory and asymptotic behavior, Tamkang J. Math. 19 (1988), 91-95. (1988) Zbl0688.39001MR1010642
  17. Thandapani, E., Pandian, S., Balasubramanian, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. (2005) Zbl1154.39302MR2329832
  18. Wang, X., Huang, L., Oscillation for an odd-order delay difference equations with several delays, Int. J. Qual. Theory Differ. Equ. Appl. 2 (2008), 15-23. (2008) Zbl1263.39009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.