Oscillation theorems for third order nonlinear delay difference equations
Kumar S. Vidhyaa; Chinnappa Dharuman; Ethiraju Thandapani; Sandra Pinelas
Mathematica Bohemica (2019)
- Volume: 144, Issue: 1, page 25-37
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topVidhyaa, Kumar S., et al. "Oscillation theorems for third order nonlinear delay difference equations." Mathematica Bohemica 144.1 (2019): 25-37. <http://eudml.org/doc/294592>.
@article{Vidhyaa2019,
abstract = {Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form \[ \Delta (a\_n(\Delta (b\_n(\Delta y\_n)^\{\alpha \})))+q\_nf(y\_\{\sigma (n)\})=0 \]
to have property $\{(\rm A)\}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.},
author = {Vidhyaa, Kumar S., Dharuman, Chinnappa, Thandapani, Ethiraju, Pinelas, Sandra},
journal = {Mathematica Bohemica},
keywords = {third order delay difference equation; property $\{(\rm A)\}$; comparison theorem},
language = {eng},
number = {1},
pages = {25-37},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillation theorems for third order nonlinear delay difference equations},
url = {http://eudml.org/doc/294592},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Vidhyaa, Kumar S.
AU - Dharuman, Chinnappa
AU - Thandapani, Ethiraju
AU - Pinelas, Sandra
TI - Oscillation theorems for third order nonlinear delay difference equations
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 1
SP - 25
EP - 37
AB - Sufficient conditions are obtained for the third order nonlinear delay difference equation of the form \[ \Delta (a_n(\Delta (b_n(\Delta y_n)^{\alpha })))+q_nf(y_{\sigma (n)})=0 \]
to have property ${(\rm A)}$ or to be oscillatory. These conditions improve and complement many known results reported in the literature. Examples are provided to illustrate the importance of the main results.
LA - eng
KW - third order delay difference equation; property ${(\rm A)}$; comparison theorem
UR - http://eudml.org/doc/294592
ER -
References
top- Agarwal, R. P., Difference Equations and Inequalities. Theory, Methods and Applications, Pure and Applied Mathematics 228. Marcel Dekker, NewYork (2000). (2000) Zbl0952.39001MR1740241
- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., Discrete Oscillation Theory, Hindawi Publishing, New York (2005). (2005) Zbl1084.39001MR2179948
- Agarwal, R. P., Grace, S. R., 10.1016/S0898-1221(01)00162-6, Comput. Math. Appl. 42 (2001), 379-384. (2001) Zbl1003.39006MR1837999DOI10.1016/S0898-1221(01)00162-6
- Agarwal, R. P., Grace, S. R., O'Regan, D., 10.1155/ADE.2005.345, Adv. Difference Equ. 2005 (2005), 345-367. (2005) Zbl1107.39004MR2201689DOI10.1155/ADE.2005.345
- Alzabut, J., Bolat, Y., 10.1007/s10013-014-0106-y, Vietnam J. Math. 43 (2015), 583-594. (2015) Zbl1326.39008MR3386063DOI10.1007/s10013-014-0106-y
- Artzrouni, M., 10.1007/BF00276233, J. Math. Biol. 21 (1985), 363-381. (1985) Zbl0567.92013MR0804157DOI10.1007/BF00276233
- Bolat, Y., Alzabut, J., On the oscillation of higher-order half-linear delay difference equations, Appl. Math. Inf. Sci. 6 (2012), 423-427. (2012) MR2970650
- Bolat, Y., Alzabut, J., 10.1155/2014/791631, Int. J. Differ. Equ. 2014 (2014), Article ID 791631, 6 pages. (2014) Zbl1291.39032MR3214492DOI10.1155/2014/791631
- Došlá, Z., Kobza, A., 10.1016/j.camwa.2003.05.008, Comput. Math. Appl. 48 (2004), 191-200. (2004) Zbl1068.39006MR2086796DOI10.1016/j.camwa.2003.05.008
- Došlá, Z., Kobza, A., 10.1155/ADE/2006/65652, Adv. Difference Equ. (2006), Article ID 65652, 13 pages. (2006) Zbl1133.39007MR2209669DOI10.1155/ADE/2006/65652
- Grace, S. R., Agarwal, R. P., Graef, J. R., 10.2298/AADM0901027G, Appl. Anal. Discrete Math. 3 (2009), 27-38. (2009) Zbl1224.39016MR2499304DOI10.2298/AADM0901027G
- Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. (1999) Zbl1141.39301MR1745309
- Saker, S. H., Alzabut, J. O., Oscillatory behavior of third order nonlinear difference equations with delayed argument, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17 (2010), 707-723. (2010) Zbl1215.39015MR2767893
- Saker, S. H., Alzabut, J. O., Mukheimer, A., 10.14232/ejqtde.2010.1.67, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 67, 16 pages. (2010) Zbl1208.39019MR2735028DOI10.14232/ejqtde.2010.1.67
- Smith, B., 10.1216/RMJ-1987-17-3-597, Rocky Mt. J. Math. 17 (1987), 597-606. (1987) Zbl0632.39002MR0908266DOI10.1216/RMJ-1987-17-3-597
- B. Smith, W. E. Taylor, Jr., Nonlinear third-order difference equation: Oscillatory and asymptotic behavior, Tamkang J. Math. 19 (1988), 91-95. (1988) Zbl0688.39001MR1010642
- Thandapani, E., Pandian, S., Balasubramanian, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. (2005) Zbl1154.39302MR2329832
- Wang, X., Huang, L., Oscillation for an odd-order delay difference equations with several delays, Int. J. Qual. Theory Differ. Equ. Appl. 2 (2008), 15-23. (2008) Zbl1263.39009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.