Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
Govindasamy Ayyappan; George E. Chatzarakis; Thaniarasu Kumar; Ethiraj Thandapani
Mathematica Bohemica (2023)
- Volume: 148, Issue: 1, page 35-47
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAyyappan, Govindasamy, et al. "Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations." Mathematica Bohemica 148.1 (2023): 35-47. <http://eudml.org/doc/299411>.
@article{Ayyappan2023,
abstract = {We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation \[ D\_3y(n)+f(n)y^\beta (\sigma (n))=0, \]
where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.},
author = {Ayyappan, Govindasamy, Chatzarakis, George E., Kumar, Thaniarasu, Thandapani, Ethiraj},
journal = {Mathematica Bohemica},
keywords = {semi-noncanonical operator; third-order; delay difference equation; oscillation},
language = {eng},
number = {1},
pages = {35-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations},
url = {http://eudml.org/doc/299411},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Ayyappan, Govindasamy
AU - Chatzarakis, George E.
AU - Kumar, Thaniarasu
AU - Thandapani, Ethiraj
TI - Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 35
EP - 47
AB - We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation \[ D_3y(n)+f(n)y^\beta (\sigma (n))=0, \]
where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.
LA - eng
KW - semi-noncanonical operator; third-order; delay difference equation; oscillation
UR - http://eudml.org/doc/299411
ER -
References
top- Agarwal, R. P., 10.1201/9781420027020, Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241DOI10.1201/9781420027020
- Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindawi Publications, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
- Agarwal, R. P., Grace, S. R., O'Regan, D., 10.1155/ADE.2005.345, Adv. Difference Equ. 2005 (2005), 345-367. (2005) Zbl1107.39004MR2201689DOI10.1155/ADE.2005.345
- Agarwal, R. P., Grace, S. R., Wong, P. J. Y., 10.1007/s12190-009-0243-8, J. Appl. Math. Comput. 32 (2010), 189-203. (2010) Zbl1191.39012MR2578923DOI10.1007/s12190-009-0243-8
- Aktaş, M. F., Tiryaki, A., Zafer, A., 10.3906/mat-1010-67, Turk. J. Math. 36 (2012), 422-436. (2012) Zbl1260.39015MR2993574DOI10.3906/mat-1010-67
- Alzabut, J., Bohner, M., Grace, S. R., 10.1186/s13662-020-03156-0, Adv. Difference Equ. 2021 (2021), Article ID 3, 18 pages. (2021) MR4196627DOI10.1186/s13662-020-03156-0
- Arul, R., Ayyappan, G., 10.26637/mjm102/001, Malaya J. Mat. 1 (2013), 1-10. (2013) Zbl1369.39002DOI10.26637/mjm102/001
- Ayyappan, G., Chatzarakis, G. E., Gopal, T., Thandapani, E., On the oscillation of third-order Emden-Fowler type difference equations with unbounded neutral term, Nonlinear Stud. 27 (2020), 1105-1115. (2020) Zbl07429837MR4182255
- Bohner, M., Dharuman, C., Srinivasan, R., Thandapani, E., 10.18576/amis/110305, Appl. Math. Inf. Sci. 11 (2017), 669-676. (2017) MR36488061DOI10.18576/amis/110305
- Došlá, Z., Kobza, A., 10.1155/ADE/2006/65652, Adv. Difference Equ. 2006 (2006), Article ID 65652, 13 pages. (2006) Zbl1133.39007MR2209669DOI10.1155/ADE/2006/65652
- Gopal, T., Ayyapan, G., Arul, R., 10.26637/MJM0803/0100, Malaya J. Mat. 8 (2020), 1301-1306. (2020) MR4147103DOI10.26637/MJM0803/0100
- Grace, S. R., Agarwal, R. P., Aktas, M. F., Oscillation criteria for third order nonlinear difference equations, Fasc. Math. 42 (2009), 39-51. (2009) Zbl1186.39012MR2573524
- Grace, S. R., Agarwal, R. P., Graef, J. R., 10.2298/AADM0901027G, Appl. Anal. Discrete Math. 3 (2009), 27-38. (2009) Zbl1224.39016MR2499304DOI10.2298/AADM0901027G
- Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. (1999) Zbl1141.39301MR1745309
- Banu, S. Mehar, Banu, M. Nazreen, 10.26637/MJMS2101/0122, Malaya J. Matematik S (2021), 531-536. (2021) DOI10.26637/MJMS2101/0122
- Mohankumar, P., Ananthan, V., Ramesh, A., Oscillation solution of third order nonlinear difference equations with delays, Int. J. Math. Comput. Research 2 (2014), 581-586. (2014)
- Saker, S. H., Alzabut, J. O., Oscillatory behavior of third order nonlinear difference equations with delayed argument, Dyn. Contin. Discrete Impuls. Syst., Ser. A., Math. Anal. 17 (2010), 707-723. (2010) Zbl1215.39015MR2767893
- Saker, S. H., Alzabut, J. O., Mukheimer, A., 10.14232/ejqtde.2010.1.67, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 67, 16 pages. (2010) Zbl1208.39019MR2735028DOI10.14232/ejqtde.2010.1.67
- Schmeidel, E., Oscillatory and asymptotically zero solutions of third order difference equations with quasidifferences, Opusc. Math. 26 (2006), 361-369. (2006) Zbl1133.39011MR2272303
- Shoukaku, Y., On the oscillation of solutions of first-order difference equations with delay, Commun. Math. Anal. 20 (2017), 62-67. (2017) Zbl1383.39012MR3744011
- Srinivasan, R., Dharuman, C., Graef, J. R., Thandapani, E., Oscillation and property (B) of third order delay difference equations with a damping term, Commun. Appl. Nonlinear Anal. 26 (2019), 55-67. (2019) MR3967189
- Thandapani, E., Pandian, S., Balasubramaniam, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. (2005) Zbl1154.39302MR2329832
- Thandapani, E., Selvarangam, S., Oscillation theorems for second order quasilinear neutral difference equations, J. Math. Comput. Sci. 2 (2012), 866-879. (2012) MR2947156
- Vidhayaa, K. S., Dharuman, C., Thandapani, E., Pinelas, S., 10.21136/MB.2018.0019-17, Math. Bohem. 144 (2019), 25-37. (2019) Zbl07088834MR3934196DOI10.21136/MB.2018.0019-17
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.