Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations

Govindasamy Ayyappan; George E. Chatzarakis; Thaniarasu Kumar; Ethiraj Thandapani

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 1, page 35-47
  • ISSN: 0862-7959

Abstract

top
We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation D 3 y ( n ) + f ( n ) y β ( σ ( n ) ) = 0 , where D 3 y ( n ) = Δ ( b ( n ) Δ ( a ( n ) ( Δ y ( n ) ) α ) ) is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.

How to cite

top

Ayyappan, Govindasamy, et al. "Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations." Mathematica Bohemica 148.1 (2023): 35-47. <http://eudml.org/doc/299411>.

@article{Ayyappan2023,
abstract = {We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation \[ D\_3y(n)+f(n)y^\beta (\sigma (n))=0, \] where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.},
author = {Ayyappan, Govindasamy, Chatzarakis, George E., Kumar, Thaniarasu, Thandapani, Ethiraj},
journal = {Mathematica Bohemica},
keywords = {semi-noncanonical operator; third-order; delay difference equation; oscillation},
language = {eng},
number = {1},
pages = {35-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations},
url = {http://eudml.org/doc/299411},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Ayyappan, Govindasamy
AU - Chatzarakis, George E.
AU - Kumar, Thaniarasu
AU - Thandapani, Ethiraj
TI - Oscillatory properties of third-order semi-noncanonical nonlinear delay difference equations
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 35
EP - 47
AB - We study the oscillatory properties of the solutions of the third-order nonlinear semi-noncanonical delay difference equation \[ D_3y(n)+f(n)y^\beta (\sigma (n))=0, \] where $D_3 y(n)=\Delta (b(n)\Delta (a(n)(\Delta y(n))^\alpha ))$ is studied. The main idea is to transform the semi-noncanonical operator into canonical form. Then we obtain new oscillation theorems for the studied equation. Examples are provided to illustrate the importance of the main results.
LA - eng
KW - semi-noncanonical operator; third-order; delay difference equation; oscillation
UR - http://eudml.org/doc/299411
ER -

References

top
  1. Agarwal, R. P., 10.1201/9781420027020, Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). (2000) Zbl0952.39001MR1740241DOI10.1201/9781420027020
  2. Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D., 10.1155/9789775945198, Hindawi Publications, New York (2005). (2005) Zbl1084.39001MR2179948DOI10.1155/9789775945198
  3. Agarwal, R. P., Grace, S. R., O'Regan, D., 10.1155/ADE.2005.345, Adv. Difference Equ. 2005 (2005), 345-367. (2005) Zbl1107.39004MR2201689DOI10.1155/ADE.2005.345
  4. Agarwal, R. P., Grace, S. R., Wong, P. J. Y., 10.1007/s12190-009-0243-8, J. Appl. Math. Comput. 32 (2010), 189-203. (2010) Zbl1191.39012MR2578923DOI10.1007/s12190-009-0243-8
  5. Aktaş, M. F., Tiryaki, A., Zafer, A., 10.3906/mat-1010-67, Turk. J. Math. 36 (2012), 422-436. (2012) Zbl1260.39015MR2993574DOI10.3906/mat-1010-67
  6. Alzabut, J., Bohner, M., Grace, S. R., 10.1186/s13662-020-03156-0, Adv. Difference Equ. 2021 (2021), Article ID 3, 18 pages. (2021) MR4196627DOI10.1186/s13662-020-03156-0
  7. Arul, R., Ayyappan, G., 10.26637/mjm102/001, Malaya J. Mat. 1 (2013), 1-10. (2013) Zbl1369.39002DOI10.26637/mjm102/001
  8. Ayyappan, G., Chatzarakis, G. E., Gopal, T., Thandapani, E., On the oscillation of third-order Emden-Fowler type difference equations with unbounded neutral term, Nonlinear Stud. 27 (2020), 1105-1115. (2020) Zbl07429837MR4182255
  9. Bohner, M., Dharuman, C., Srinivasan, R., Thandapani, E., 10.18576/amis/110305, Appl. Math. Inf. Sci. 11 (2017), 669-676. (2017) MR36488061DOI10.18576/amis/110305
  10. Došlá, Z., Kobza, A., 10.1155/ADE/2006/65652, Adv. Difference Equ. 2006 (2006), Article ID 65652, 13 pages. (2006) Zbl1133.39007MR2209669DOI10.1155/ADE/2006/65652
  11. Gopal, T., Ayyapan, G., Arul, R., 10.26637/MJM0803/0100, Malaya J. Mat. 8 (2020), 1301-1306. (2020) MR4147103DOI10.26637/MJM0803/0100
  12. Grace, S. R., Agarwal, R. P., Aktas, M. F., Oscillation criteria for third order nonlinear difference equations, Fasc. Math. 42 (2009), 39-51. (2009) Zbl1186.39012MR2573524
  13. Grace, S. R., Agarwal, R. P., Graef, J. R., 10.2298/AADM0901027G, Appl. Anal. Discrete Math. 3 (2009), 27-38. (2009) Zbl1224.39016MR2499304DOI10.2298/AADM0901027G
  14. Graef, J. R., Thandapani, E., Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkc. Ekvacioj, Ser. Int. 42 (1999), 355-369. (1999) Zbl1141.39301MR1745309
  15. Banu, S. Mehar, Banu, M. Nazreen, 10.26637/MJMS2101/0122, Malaya J. Matematik S (2021), 531-536. (2021) DOI10.26637/MJMS2101/0122
  16. Mohankumar, P., Ananthan, V., Ramesh, A., Oscillation solution of third order nonlinear difference equations with delays, Int. J. Math. Comput. Research 2 (2014), 581-586. (2014) 
  17. Saker, S. H., Alzabut, J. O., Oscillatory behavior of third order nonlinear difference equations with delayed argument, Dyn. Contin. Discrete Impuls. Syst., Ser. A., Math. Anal. 17 (2010), 707-723. (2010) Zbl1215.39015MR2767893
  18. Saker, S. H., Alzabut, J. O., Mukheimer, A., 10.14232/ejqtde.2010.1.67, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 67, 16 pages. (2010) Zbl1208.39019MR2735028DOI10.14232/ejqtde.2010.1.67
  19. Schmeidel, E., Oscillatory and asymptotically zero solutions of third order difference equations with quasidifferences, Opusc. Math. 26 (2006), 361-369. (2006) Zbl1133.39011MR2272303
  20. Shoukaku, Y., On the oscillation of solutions of first-order difference equations with delay, Commun. Math. Anal. 20 (2017), 62-67. (2017) Zbl1383.39012MR3744011
  21. Srinivasan, R., Dharuman, C., Graef, J. R., Thandapani, E., Oscillation and property (B) of third order delay difference equations with a damping term, Commun. Appl. Nonlinear Anal. 26 (2019), 55-67. (2019) MR3967189
  22. Thandapani, E., Pandian, S., Balasubramaniam, R. K., Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Žilina, Math. Ser. 19 (2005), 65-78. (2005) Zbl1154.39302MR2329832
  23. Thandapani, E., Selvarangam, S., Oscillation theorems for second order quasilinear neutral difference equations, J. Math. Comput. Sci. 2 (2012), 866-879. (2012) MR2947156
  24. Vidhayaa, K. S., Dharuman, C., Thandapani, E., Pinelas, S., 10.21136/MB.2018.0019-17, Math. Bohem. 144 (2019), 25-37. (2019) Zbl07088834MR3934196DOI10.21136/MB.2018.0019-17

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.