Synchronization of time-delayed systems with discontinuous coupling

Hong-jun Shi; Lian-ying Miao; Yong-zheng Sun

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 765-779
  • ISSN: 0023-5954

Abstract

top
This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.

How to cite

top

Shi, Hong-jun, Miao, Lian-ying, and Sun, Yong-zheng. "Synchronization of time-delayed systems with discontinuous coupling." Kybernetika 53.5 (2017): 765-779. <http://eudml.org/doc/294599>.

@article{Shi2017,
abstract = {This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.},
author = {Shi, Hong-jun, Miao, Lian-ying, Sun, Yong-zheng},
journal = {Kybernetika},
keywords = {time-delayed system; complete synchronization; discontinuous coupling},
language = {eng},
number = {5},
pages = {765-779},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Synchronization of time-delayed systems with discontinuous coupling},
url = {http://eudml.org/doc/294599},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Shi, Hong-jun
AU - Miao, Lian-ying
AU - Sun, Yong-zheng
TI - Synchronization of time-delayed systems with discontinuous coupling
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 765
EP - 779
AB - This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.
LA - eng
KW - time-delayed system; complete synchronization; discontinuous coupling
UR - http://eudml.org/doc/294599
ER -

References

top
  1. Aghababa, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Model. 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
  2. Akhmet, M., 10.1016/j.nahs.2011.07.003, Nonlinear Anal. Hybrid Syst. 6 (2012), 730-740. MR2854910DOI10.1016/j.nahs.2011.07.003
  3. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C., 10.1016/s0370-1573(02)00137-0, Phys.Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
  4. Chen, X., Lu, J., 10.1016/j.physleta.2006.11.092, Phys. Lett. A 364 (2007), 123-128. DOI10.1016/j.physleta.2006.11.092
  5. Chen, D., Zhang, R., Ma, X., Liu, S., 10.1007/s11071-011-0244-7, Nonlinear Dyn. 69 (2012), 35-55. MR2929853DOI10.1007/s11071-011-0244-7
  6. Erban, R., Haskovec, J., Sun, Y., 10.1137/15m1030467, SIAM J. Appl. Math. 76 (2016), 1535-1557. MR3534479DOI10.1137/15m1030467
  7. Ghosh, D., 10.1007/s11071-010-9759-6, Nonlinear Dyn. 62 (2010), 751-759. MR2745937DOI10.1007/s11071-010-9759-6
  8. Hmamed, A., 10.1080/00207729108910686, Int. J. Syst. Sci. 22 (1991), 1127-1132. MR1108275DOI10.1080/00207729108910686
  9. Hu, J., On robust consensus of multi-agent systems with communication delays., Kybernetika 45 (2009), 768-784. Zbl1190.93003MR2599111
  10. Lakshmikantham, V., Leela, S., Differential and Integral Inequalities., Academic Press, New York 1969. MR0379934
  11. Li, Y., Wu, X., Lu, J., Lü, J., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits Syst. II 63 (2016), 206-210. DOI10.1109/tcsii.2015.2468924
  12. Lin, W., 10.1016/j.physleta.2008.01.038, Phys. Lett. A 372 (2008), 3195-3200. MR2414269DOI10.1016/j.physleta.2008.01.038
  13. Lin, J., Yan, J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal.: Real World Appl. 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
  14. Lu, J., Cao, J., Ho, D., 10.1109/tcsi.2008.916462, IEEE Trans. Circuits Syst. I 55 (2008), 1347-1356. MR2538304DOI10.1109/tcsi.2008.916462
  15. Ning, D., Wu, X., Lu, J., Lü, J., 10.1063/1.4935069, Chaos 25 (2016), 113104. MR3419713DOI10.1063/1.4935069
  16. Noroozi, N., Roopaei, M., Jahromi, M., 10.1016/j.cnsns.2009.02.015, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3978-3992. MR2522900DOI10.1016/j.cnsns.2009.02.015
  17. Pan, L., Zhou, W., Fang, J., Li, D., 10.1007/s11071-010-9728-0, Nonlinear Dyn. 62 (2010), 417-425. MR2737004DOI10.1007/s11071-010-9728-0
  18. Pecora, L., Carroll, T., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  19. Pototsky, A., Janson, N., 10.1016/j.physd.2008.09.010, Physica D 238 (2009), 175-183. MR2516337DOI10.1016/j.physd.2008.09.010
  20. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
  21. Roopaei, M., Jahromi, M., 10.1063/1.2980046, Chaos 18 (2008), 033133. MR2464309DOI10.1063/1.2980046
  22. Roopaei, M., Sahraei, B., Lin, T., 10.1016/j.cnsns.2010.02.017, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. Zbl1222.93124MR2652685DOI10.1016/j.cnsns.2010.02.017
  23. Shi, H., Sun, Y., Miao, L., Duan, Z., 10.1007/s11071-016-2836-8, Nonlinear Dyn. 85 (2016), 2437-2448. MR3537059DOI10.1007/s11071-016-2836-8
  24. Shi, H., Sun, Y., Zhao, D., 10.1088/0031-8949/88/04/045003, Phys. Scr. 88 (2013), 045003. DOI10.1088/0031-8949/88/04/045003
  25. Shi, H., Sun, Y., Zhao, D., 10.1007/s11071-013-1106-2, Nonlinear Dyn. 75 (2014), 817-827. MR3164631DOI10.1007/s11071-013-1106-2
  26. Shi, X., Wang, Z., 10.1007/s11071-012-0339-9, Nonlinear Dyn. 69 (2012),1177-1190. MR2943378DOI10.1007/s11071-012-0339-9
  27. Sun, W., Huang, C., Lü, J., Li, X., 10.1063/1.4941373, Chaos 26 (2016), 023106. MR3457920DOI10.1063/1.4941373
  28. Sun, Y., Li, W., Zhao, D., 10.1063/1.4941373, Chaos 22 (2012), 043125. MR3388687DOI10.1063/1.4941373
  29. Sun, Y., Li, W., Zhao, D., 10.1063/1.4731265, Chaos 23 (2012), 023152. MR3388569DOI10.1063/1.4731265
  30. Tan, S., Lü, J., Lin, Z., 10.1137/151004276, SIAM J. Control Optim. 54 (2016), 3258-3272. MR3580811DOI10.1137/151004276
  31. Tan, S., Wang, Y., Lü, J., 10.1109/tac.2016.2545106, IEEE Trans. Automat. Control 61 (2016), 4118-4124. MR3582527DOI10.1109/tac.2016.2545106
  32. Wu, J., Ma, Z., Sun, Y., Liu, F., 10.14736/kyb-2015-1-0137, Kybernetika 51 (2015), 137-149. MR3333837DOI10.14736/kyb-2015-1-0137
  33. Yan, J., Hung, M., Chiang, T., Yang, Y., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
  34. Yu, W., Lü, J., Yu, X., Chen, G., 10.1137/140970781, SIAM J. Control Optim 53 (2015), 2980-3005. MR3396387DOI10.1137/140970781
  35. Zhang, H., Huang, W., Wang, Z., Chai, T., 10.1016/j.physleta.2005.10.033, Phys. Lett.A 350 (2006), 363-366. DOI10.1016/j.physleta.2005.10.033
  36. Zhang, G., Liu, Z., Zhang, J., 10.1016/j.physleta.2007.07.080, Phys. Lett. A 372 (2008), 447-450. MR2381824DOI10.1016/j.physleta.2007.07.080
  37. Zhou, J., Juan, C., Lu, J., Lü, J., On applicability of auxiliary system approach to detect generalized synchronization in complex networks., IEEE Trans. Automat. Control 99 (2016), 1-6. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.