Synchronization of time-delayed systems with discontinuous coupling
Hong-jun Shi; Lian-ying Miao; Yong-zheng Sun
Kybernetika (2017)
- Volume: 53, Issue: 5, page 765-779
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topShi, Hong-jun, Miao, Lian-ying, and Sun, Yong-zheng. "Synchronization of time-delayed systems with discontinuous coupling." Kybernetika 53.5 (2017): 765-779. <http://eudml.org/doc/294599>.
@article{Shi2017,
abstract = {This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.},
author = {Shi, Hong-jun, Miao, Lian-ying, Sun, Yong-zheng},
journal = {Kybernetika},
keywords = {time-delayed system; complete synchronization; discontinuous coupling},
language = {eng},
number = {5},
pages = {765-779},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Synchronization of time-delayed systems with discontinuous coupling},
url = {http://eudml.org/doc/294599},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Shi, Hong-jun
AU - Miao, Lian-ying
AU - Sun, Yong-zheng
TI - Synchronization of time-delayed systems with discontinuous coupling
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 765
EP - 779
AB - This paper concerns the synchronization of time-delayed systems with periodic on-off coupling. Based on the stability theory and the comparison theorem of time-delayed differential equations, sufficient conditions for complete synchronization of systems with constant delay and time-varying delay are established. Compared with the results based on the Krasovskii-Lyapunov method, the sufficient conditions established in this paper are less restrictive. The theoretical results show that two time-delayed systems can achieve complete synchronization when the average coupling strength is sufficiently large. Numeric evidence shows that the synchronization speed depends on the coupling strength, on-off rate and time delay.
LA - eng
KW - time-delayed system; complete synchronization; discontinuous coupling
UR - http://eudml.org/doc/294599
ER -
References
top- Aghababa, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Model. 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
- Akhmet, M., 10.1016/j.nahs.2011.07.003, Nonlinear Anal. Hybrid Syst. 6 (2012), 730-740. MR2854910DOI10.1016/j.nahs.2011.07.003
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C., 10.1016/s0370-1573(02)00137-0, Phys.Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
- Chen, X., Lu, J., 10.1016/j.physleta.2006.11.092, Phys. Lett. A 364 (2007), 123-128. DOI10.1016/j.physleta.2006.11.092
- Chen, D., Zhang, R., Ma, X., Liu, S., 10.1007/s11071-011-0244-7, Nonlinear Dyn. 69 (2012), 35-55. MR2929853DOI10.1007/s11071-011-0244-7
- Erban, R., Haskovec, J., Sun, Y., 10.1137/15m1030467, SIAM J. Appl. Math. 76 (2016), 1535-1557. MR3534479DOI10.1137/15m1030467
- Ghosh, D., 10.1007/s11071-010-9759-6, Nonlinear Dyn. 62 (2010), 751-759. MR2745937DOI10.1007/s11071-010-9759-6
- Hmamed, A., 10.1080/00207729108910686, Int. J. Syst. Sci. 22 (1991), 1127-1132. MR1108275DOI10.1080/00207729108910686
- Hu, J., On robust consensus of multi-agent systems with communication delays., Kybernetika 45 (2009), 768-784. Zbl1190.93003MR2599111
- Lakshmikantham, V., Leela, S., Differential and Integral Inequalities., Academic Press, New York 1969. MR0379934
- Li, Y., Wu, X., Lu, J., Lü, J., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits Syst. II 63 (2016), 206-210. DOI10.1109/tcsii.2015.2468924
- Lin, W., 10.1016/j.physleta.2008.01.038, Phys. Lett. A 372 (2008), 3195-3200. MR2414269DOI10.1016/j.physleta.2008.01.038
- Lin, J., Yan, J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal.: Real World Appl. 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
- Lu, J., Cao, J., Ho, D., 10.1109/tcsi.2008.916462, IEEE Trans. Circuits Syst. I 55 (2008), 1347-1356. MR2538304DOI10.1109/tcsi.2008.916462
- Ning, D., Wu, X., Lu, J., Lü, J., 10.1063/1.4935069, Chaos 25 (2016), 113104. MR3419713DOI10.1063/1.4935069
- Noroozi, N., Roopaei, M., Jahromi, M., 10.1016/j.cnsns.2009.02.015, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 3978-3992. MR2522900DOI10.1016/j.cnsns.2009.02.015
- Pan, L., Zhou, W., Fang, J., Li, D., 10.1007/s11071-010-9728-0, Nonlinear Dyn. 62 (2010), 417-425. MR2737004DOI10.1007/s11071-010-9728-0
- Pecora, L., Carroll, T., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Pototsky, A., Janson, N., 10.1016/j.physd.2008.09.010, Physica D 238 (2009), 175-183. MR2516337DOI10.1016/j.physd.2008.09.010
- Pourmahmood, M., Khanmohammadi, S., Alizadeh, G., 10.1016/j.cnsns.2010.09.038, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. Zbl1221.93131MR2772300DOI10.1016/j.cnsns.2010.09.038
- Roopaei, M., Jahromi, M., 10.1063/1.2980046, Chaos 18 (2008), 033133. MR2464309DOI10.1063/1.2980046
- Roopaei, M., Sahraei, B., Lin, T., 10.1016/j.cnsns.2010.02.017, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. Zbl1222.93124MR2652685DOI10.1016/j.cnsns.2010.02.017
- Shi, H., Sun, Y., Miao, L., Duan, Z., 10.1007/s11071-016-2836-8, Nonlinear Dyn. 85 (2016), 2437-2448. MR3537059DOI10.1007/s11071-016-2836-8
- Shi, H., Sun, Y., Zhao, D., 10.1088/0031-8949/88/04/045003, Phys. Scr. 88 (2013), 045003. DOI10.1088/0031-8949/88/04/045003
- Shi, H., Sun, Y., Zhao, D., 10.1007/s11071-013-1106-2, Nonlinear Dyn. 75 (2014), 817-827. MR3164631DOI10.1007/s11071-013-1106-2
- Shi, X., Wang, Z., 10.1007/s11071-012-0339-9, Nonlinear Dyn. 69 (2012),1177-1190. MR2943378DOI10.1007/s11071-012-0339-9
- Sun, W., Huang, C., Lü, J., Li, X., 10.1063/1.4941373, Chaos 26 (2016), 023106. MR3457920DOI10.1063/1.4941373
- Sun, Y., Li, W., Zhao, D., 10.1063/1.4941373, Chaos 22 (2012), 043125. MR3388687DOI10.1063/1.4941373
- Sun, Y., Li, W., Zhao, D., 10.1063/1.4731265, Chaos 23 (2012), 023152. MR3388569DOI10.1063/1.4731265
- Tan, S., Lü, J., Lin, Z., 10.1137/151004276, SIAM J. Control Optim. 54 (2016), 3258-3272. MR3580811DOI10.1137/151004276
- Tan, S., Wang, Y., Lü, J., 10.1109/tac.2016.2545106, IEEE Trans. Automat. Control 61 (2016), 4118-4124. MR3582527DOI10.1109/tac.2016.2545106
- Wu, J., Ma, Z., Sun, Y., Liu, F., 10.14736/kyb-2015-1-0137, Kybernetika 51 (2015), 137-149. MR3333837DOI10.14736/kyb-2015-1-0137
- Yan, J., Hung, M., Chiang, T., Yang, Y., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
- Yu, W., Lü, J., Yu, X., Chen, G., 10.1137/140970781, SIAM J. Control Optim 53 (2015), 2980-3005. MR3396387DOI10.1137/140970781
- Zhang, H., Huang, W., Wang, Z., Chai, T., 10.1016/j.physleta.2005.10.033, Phys. Lett.A 350 (2006), 363-366. DOI10.1016/j.physleta.2005.10.033
- Zhang, G., Liu, Z., Zhang, J., 10.1016/j.physleta.2007.07.080, Phys. Lett. A 372 (2008), 447-450. MR2381824DOI10.1016/j.physleta.2007.07.080
- Zhou, J., Juan, C., Lu, J., Lü, J., On applicability of auxiliary system approach to detect generalized synchronization in complex networks., IEEE Trans. Automat. Control 99 (2016), 1-6.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.