Finite-time synchronization of chaotic systems with noise perturbation
Jie Wu; Zhi-cai Ma; Yong-zheng Sun; Feng Liu
Kybernetika (2015)
- Volume: 51, Issue: 1, page 137-149
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWu, Jie, et al. "Finite-time synchronization of chaotic systems with noise perturbation." Kybernetika 51.1 (2015): 137-149. <http://eudml.org/doc/270037>.
@article{Wu2015,
abstract = {In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.},
author = {Wu, Jie, Ma, Zhi-cai, Sun, Yong-zheng, Liu, Feng},
journal = {Kybernetika},
keywords = {synchronization; finite-time; noise perturbation; adaptive feedback controller; synchronization; finite-time; noise perturbation; adaptive feedback controller},
language = {eng},
number = {1},
pages = {137-149},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time synchronization of chaotic systems with noise perturbation},
url = {http://eudml.org/doc/270037},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Wu, Jie
AU - Ma, Zhi-cai
AU - Sun, Yong-zheng
AU - Liu, Feng
TI - Finite-time synchronization of chaotic systems with noise perturbation
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 137
EP - 149
AB - In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.
LA - eng
KW - synchronization; finite-time; noise perturbation; adaptive feedback controller; synchronization; finite-time; noise perturbation; adaptive feedback controller
UR - http://eudml.org/doc/270037
ER -
References
top- Aghababa, M. P., Aghababa, H. P., 10.1007/s11071-012-0395-1, Nonlinear Dyn. 69 (2012), 1903-1914. Zbl1263.93111MR2945528DOI10.1007/s11071-012-0395-1
- Aghababa, M. P., Aghababa, H. P., 10.1007/s13369-012-0459-z, Arab. J. Sci. Eng. 38 (2013), 3221-3232. MR3116110DOI10.1007/s13369-012-0459-z
- Aghababa, M. P., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Model. 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
- Alvarez, G., Hernández, L., Muñoz, J., Montoya, F., Li, S. J., 10.1016/j.physleta.2005.07.083, Phys. Lett. A 345 (2005), 245-250. DOI10.1016/j.physleta.2005.07.083
- Argenti, F., DeAngeli, A., DelRe, E., Genesio, R., Pagni, P., Tesi, A., Secure communications based on discrete time chaotic systems., Kybernetika 33 (1997), 41-50. MR1486295
- Beran, Z., On characterization of the solution set in case of generalized semiflow., Kybernetika 45 (2009), 701-715. Zbl1190.93036MR2599107
- Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/s0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
- Cai, N., Li, W. Q., Jing, Y. W., 10.1007/s11071-010-9869-1, Nonlinear Dyn. 64 (2011), 385-393. MR2803218DOI10.1007/s11071-010-9869-1
- Cheng, S., Ji, J. C., Zhou, J., 10.1016/j.apm.2012.02.018, Appl. Math. Model. 37 (2013), 127-136. MR2994171DOI10.1016/j.apm.2012.02.018
- Čelikovský, S., Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization., Kybernetika 40 (2004), 649-664. Zbl1249.93090MR2120388
- Čelikovský, S., Chen, G. R., 10.1016/j.chaos.2005.02.040, Chaos Solition. Fract. 26 (2005), 1271-1276. Zbl1100.37016MR2149315DOI10.1016/j.chaos.2005.02.040
- Ding, K., Han, Q. L., 10.1142/s0218127410027908, Int. J. Bifur. Chaos 20 (2010), 3565-3584. Zbl1208.34082MR2765079DOI10.1142/s0218127410027908
- Ding, K., Han, Q. L., 10.1016/j.jsv.2010.12.006, J. Sound Vibration 330 (2011), 2419-2436. DOI10.1016/j.jsv.2010.12.006
- Ding, K., Han, Q. L., 10.1142/s0218127412501477, Int. J. Bifur. Chaos 22 (2012), 1250147. Zbl1270.34149DOI10.1142/s0218127412501477
- Enjieu, K. H. G., Chabi, O. J. B., Woafo, P., 10.1016/j.cnsns.2006.11.004, Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372. MR2369467DOI10.1016/j.cnsns.2006.11.004
- Grosu, I., Padmanabanm, E., Roy, P. K., Dana, S. K., 10.1103/physrevlett.100.234102, Phys. Rev. Lett. 100 (2008), 234102. DOI10.1103/physrevlett.100.234102
- He, W. L., Cao, J. D., 10.1016/j.physleta.2007.07.050, Phys. Lett. A 372 (2008), 408-416. Zbl1217.92011DOI10.1016/j.physleta.2007.07.050
- He, W. L., Du, W. L., Qian, F., Cao, J. D., 10.1016/j.neucom.2012.10.008, Neurocomputing 104 (2013), 146-154. DOI10.1016/j.neucom.2012.10.008
- He, W. L., Qian, F., Han, Q. L., Cao, J. D., 10.1109/tnnls.2012.2205941, IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563. DOI10.1109/tnnls.2012.2205941
- Henrion, D., Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems., Kybernetika 48 (2012), 1089-1099. Zbl1255.37002MR3052875
- Huang, D. B., 10.1103/physreve.71.037203, Phys. Rev. E 71 (2005), 037203. DOI10.1103/physreve.71.037203
- Lasalle, J. P., 10.1073/pnas.46.3.363, Proc. Natl. Acad. Sci. U. S. A. 46 (1960), 363-365. MR0113014DOI10.1073/pnas.46.3.363
- Lasalle, J. P., 10.1109/tct.1960.1086720, IRE Trans. Circuit Theory 7 (1960), 520-527. MR0118902DOI10.1109/tct.1960.1086720
- Li, H. Y., Hu, Y. A., Wang, R. Q., Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties., Kybernetika 49 (2013), 554-567. MR3117914
- Lin, J. S., Yan, J. J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal. Real. 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
- Liu, Y. J., 10.1007/s11071-011-9960-2, Nonlinear Dyn. 67 (2012), 89-96. Zbl1242.93056DOI10.1007/s11071-011-9960-2
- Lu, W. L., Chen, T. P., 10.1016/j.physd.2005.11.009, Physica D 213 (2006), 214-230. Zbl1105.34031MR2201200DOI10.1016/j.physd.2005.11.009
- Lynnyk, V., Čelikovský, S., On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption., Kybernetika 46 (2010), 1-18. Zbl1190.93038MR2666891
- Mao, X., Stochastic Differential Equations and Applications., Horwood 1997. Zbl1138.60005
- Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., Kusch, H. A., 10.1126/science.257.5071.754, Science 257 (1992), 754-760. DOI10.1126/science.257.5071.754
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., Ditto, W. L., 10.1038/370615a0, Nature 370 (1994), 615-620. DOI10.1038/370615a0
- Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. Q., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
- Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L., 10.1016/j.amc.2009.10.020 MR2576820DOI10.1016/j.amc.2009.10.020
- Vincent, U. E., Guo, R., 10.1016/j.physleta.2011.04.041, Phys. Lett. A 375 (2011), 2322-2326. Zbl1242.34078MR2737904DOI10.1016/j.physleta.2011.04.041
- Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.nonrwa.2008.08.010, Nonlinear Anal. Real. 10 (2009), 2842-2849. Zbl1183.34072MR2523247DOI10.1016/j.nonrwa.2008.08.010
- Yang, Y. Q., Wu, X. F., 10.1007/s11071-012-0442-y, Nonlinear Dyn. 70 (2012), 197-208. Zbl1267.93150MR2991264DOI10.1007/s11071-012-0442-y
- Yin, J. L., Khoo, S., 10.1016/j.automatica.2011.02.052, Automatica 47 (2011), 1542-1543. MR2889257DOI10.1016/j.automatica.2011.02.052
- Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H., 10.1016/j.automatica.2011.08.050, Automatica 47 (2011), 2671-2677. Zbl1235.93254MR2886936DOI10.1016/j.automatica.2011.08.050
- Zhao, J. K., Wu, Y., Wang, Y. Y., 10.1007/s11071-013-0970-0, Nonlinear Dyn. 74 (2013), 479-485. Zbl1279.34062MR3117637DOI10.1007/s11071-013-0970-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.