Finite-time synchronization of chaotic systems with noise perturbation

Jie Wu; Zhi-cai Ma; Yong-zheng Sun; Feng Liu

Kybernetika (2015)

  • Volume: 51, Issue: 1, page 137-149
  • ISSN: 0023-5954

Abstract

top
In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.

How to cite

top

Wu, Jie, et al. "Finite-time synchronization of chaotic systems with noise perturbation." Kybernetika 51.1 (2015): 137-149. <http://eudml.org/doc/270037>.

@article{Wu2015,
abstract = {In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.},
author = {Wu, Jie, Ma, Zhi-cai, Sun, Yong-zheng, Liu, Feng},
journal = {Kybernetika},
keywords = {synchronization; finite-time; noise perturbation; adaptive feedback controller; synchronization; finite-time; noise perturbation; adaptive feedback controller},
language = {eng},
number = {1},
pages = {137-149},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time synchronization of chaotic systems with noise perturbation},
url = {http://eudml.org/doc/270037},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wu, Jie
AU - Ma, Zhi-cai
AU - Sun, Yong-zheng
AU - Liu, Feng
TI - Finite-time synchronization of chaotic systems with noise perturbation
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 137
EP - 149
AB - In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.
LA - eng
KW - synchronization; finite-time; noise perturbation; adaptive feedback controller; synchronization; finite-time; noise perturbation; adaptive feedback controller
UR - http://eudml.org/doc/270037
ER -

References

top
  1. Aghababa, M. P., Aghababa, H. P., 10.1007/s11071-012-0395-1, Nonlinear Dyn. 69 (2012), 1903-1914. Zbl1263.93111MR2945528DOI10.1007/s11071-012-0395-1
  2. Aghababa, M. P., Aghababa, H. P., 10.1007/s13369-012-0459-z, Arab. J. Sci. Eng. 38 (2013), 3221-3232. MR3116110DOI10.1007/s13369-012-0459-z
  3. Aghababa, M. P., Khanmohammadi, S., Alizadeh, G., 10.1016/j.apm.2010.12.020, Appl. Math. Model. 35 (2011), 3080-3091. Zbl1219.93023MR2776263DOI10.1016/j.apm.2010.12.020
  4. Alvarez, G., Hernández, L., Muñoz, J., Montoya, F., Li, S. J., 10.1016/j.physleta.2005.07.083, Phys. Lett. A 345 (2005), 245-250. DOI10.1016/j.physleta.2005.07.083
  5. Argenti, F., DeAngeli, A., DelRe, E., Genesio, R., Pagni, P., Tesi, A., Secure communications based on discrete time chaotic systems., Kybernetika 33 (1997), 41-50. MR1486295
  6. Beran, Z., On characterization of the solution set in case of generalized semiflow., Kybernetika 45 (2009), 701-715. Zbl1190.93036MR2599107
  7. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S., 10.1016/s0370-1573(02)00137-0, Phys. Rep. 366 (2002), 1-101. Zbl0995.37022MR1913567DOI10.1016/s0370-1573(02)00137-0
  8. Cai, N., Li, W. Q., Jing, Y. W., 10.1007/s11071-010-9869-1, Nonlinear Dyn. 64 (2011), 385-393. MR2803218DOI10.1007/s11071-010-9869-1
  9. Cheng, S., Ji, J. C., Zhou, J., 10.1016/j.apm.2012.02.018, Appl. Math. Model. 37 (2013), 127-136. MR2994171DOI10.1016/j.apm.2012.02.018
  10. Čelikovský, S., Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization., Kybernetika 40 (2004), 649-664. Zbl1249.93090MR2120388
  11. Čelikovský, S., Chen, G. R., 10.1016/j.chaos.2005.02.040, Chaos Solition. Fract. 26 (2005), 1271-1276. Zbl1100.37016MR2149315DOI10.1016/j.chaos.2005.02.040
  12. Ding, K., Han, Q. L., 10.1142/s0218127410027908, Int. J. Bifur. Chaos 20 (2010), 3565-3584. Zbl1208.34082MR2765079DOI10.1142/s0218127410027908
  13. Ding, K., Han, Q. L., 10.1016/j.jsv.2010.12.006, J. Sound Vibration 330 (2011), 2419-2436. DOI10.1016/j.jsv.2010.12.006
  14. Ding, K., Han, Q. L., 10.1142/s0218127412501477, Int. J. Bifur. Chaos 22 (2012), 1250147. Zbl1270.34149DOI10.1142/s0218127412501477
  15. Enjieu, K. H. G., Chabi, O. J. B., Woafo, P., 10.1016/j.cnsns.2006.11.004, Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372. MR2369467DOI10.1016/j.cnsns.2006.11.004
  16. Grosu, I., Padmanabanm, E., Roy, P. K., Dana, S. K., 10.1103/physrevlett.100.234102, Phys. Rev. Lett. 100 (2008), 234102. DOI10.1103/physrevlett.100.234102
  17. He, W. L., Cao, J. D., 10.1016/j.physleta.2007.07.050, Phys. Lett. A 372 (2008), 408-416. Zbl1217.92011DOI10.1016/j.physleta.2007.07.050
  18. He, W. L., Du, W. L., Qian, F., Cao, J. D., 10.1016/j.neucom.2012.10.008, Neurocomputing 104 (2013), 146-154. DOI10.1016/j.neucom.2012.10.008
  19. He, W. L., Qian, F., Han, Q. L., Cao, J. D., 10.1109/tnnls.2012.2205941, IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563. DOI10.1109/tnnls.2012.2205941
  20. Henrion, D., Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems., Kybernetika 48 (2012), 1089-1099. Zbl1255.37002MR3052875
  21. Huang, D. B., 10.1103/physreve.71.037203, Phys. Rev. E 71 (2005), 037203. DOI10.1103/physreve.71.037203
  22. Lasalle, J. P., 10.1073/pnas.46.3.363, Proc. Natl. Acad. Sci. U. S. A. 46 (1960), 363-365. MR0113014DOI10.1073/pnas.46.3.363
  23. Lasalle, J. P., 10.1109/tct.1960.1086720, IRE Trans. Circuit Theory 7 (1960), 520-527. MR0118902DOI10.1109/tct.1960.1086720
  24. Li, H. Y., Hu, Y. A., Wang, R. Q., Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties., Kybernetika 49 (2013), 554-567. MR3117914
  25. Lin, J. S., Yan, J. J., 10.1016/j.nonrwa.2007.12.005, Nonlinear Anal. Real. 10 (2009), 1151-1159. Zbl1167.37329MR2474288DOI10.1016/j.nonrwa.2007.12.005
  26. Liu, Y. J., 10.1007/s11071-011-9960-2, Nonlinear Dyn. 67 (2012), 89-96. Zbl1242.93056DOI10.1007/s11071-011-9960-2
  27. Lu, W. L., Chen, T. P., 10.1016/j.physd.2005.11.009, Physica D 213 (2006), 214-230. Zbl1105.34031MR2201200DOI10.1016/j.physd.2005.11.009
  28. Lynnyk, V., Čelikovský, S., On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption., Kybernetika 46 (2010), 1-18. Zbl1190.93038MR2666891
  29. Mao, X., Stochastic Differential Equations and Applications., Horwood 1997. Zbl1138.60005
  30. Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., Kusch, H. A., 10.1126/science.257.5071.754, Science 257 (1992), 754-760. DOI10.1126/science.257.5071.754
  31. Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  32. Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., Ditto, W. L., 10.1038/370615a0, Nature 370 (1994), 615-620. DOI10.1038/370615a0
  33. Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. Q., 10.1016/j.physleta.2006.03.047, Phys. Lett. A 356 (2006), 220-225. Zbl1160.37352DOI10.1016/j.physleta.2006.03.047
  34. Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L., 10.1016/j.amc.2009.10.020 MR2576820DOI10.1016/j.amc.2009.10.020
  35. Vincent, U. E., Guo, R., 10.1016/j.physleta.2011.04.041, Phys. Lett. A 375 (2011), 2322-2326. Zbl1242.34078MR2737904DOI10.1016/j.physleta.2011.04.041
  36. Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W., 10.1016/j.nonrwa.2008.08.010, Nonlinear Anal. Real. 10 (2009), 2842-2849. Zbl1183.34072MR2523247DOI10.1016/j.nonrwa.2008.08.010
  37. Yang, Y. Q., Wu, X. F., 10.1007/s11071-012-0442-y, Nonlinear Dyn. 70 (2012), 197-208. Zbl1267.93150MR2991264DOI10.1007/s11071-012-0442-y
  38. Yin, J. L., Khoo, S., 10.1016/j.automatica.2011.02.052, Automatica 47 (2011), 1542-1543. MR2889257DOI10.1016/j.automatica.2011.02.052
  39. Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H., 10.1016/j.automatica.2011.08.050, Automatica 47 (2011), 2671-2677. Zbl1235.93254MR2886936DOI10.1016/j.automatica.2011.08.050
  40. Zhao, J. K., Wu, Y., Wang, Y. Y., 10.1007/s11071-013-0970-0, Nonlinear Dyn. 74 (2013), 479-485. Zbl1279.34062MR3117637DOI10.1007/s11071-013-0970-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.