Betti numbers of some circulant graphs
Mohsen Abdi Makvand; Amir Mousivand
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 593-607
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbdi Makvand, Mohsen, and Mousivand, Amir. "Betti numbers of some circulant graphs." Czechoslovak Mathematical Journal 69.3 (2019): 593-607. <http://eudml.org/doc/294601>.
@article{AbdiMakvand2019,
abstract = {Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb \{N\}$-graded Betti numbers of the circulant graphs $C_\{2n\}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.},
author = {Abdi Makvand, Mohsen, Mousivand, Amir},
journal = {Czechoslovak Mathematical Journal},
keywords = {Betti number; Castelnuovo-Mumford regularity; projective dimension; circulant graph},
language = {eng},
number = {3},
pages = {593-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Betti numbers of some circulant graphs},
url = {http://eudml.org/doc/294601},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Abdi Makvand, Mohsen
AU - Mousivand, Amir
TI - Betti numbers of some circulant graphs
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 593
EP - 607
AB - Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb {N}$-graded Betti numbers of the circulant graphs $C_{2n}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.
LA - eng
KW - Betti number; Castelnuovo-Mumford regularity; projective dimension; circulant graph
UR - http://eudml.org/doc/294601
ER -
References
top- Abbott, J., Bigatti, A. M., Robbiano, L., CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it. SW: https://swmath.org/software/00143
- Boros, E., Gurvich, V., Milanič, M., 10.1016/j.disc.2013.11.015, Discrete Math. 318 (2014), 78-95. (2014) Zbl1281.05073MR3141630DOI10.1016/j.disc.2013.11.015
- Brown, J., Hoshino, R., 10.1016/j.disc.2008.05.003, Discrete Math. 309 (2009), 2292-2304. (2009) Zbl1228.05178MR2510357DOI10.1016/j.disc.2008.05.003
- Brown, J., Hoshino, R., 10.1016/j.disc.2010.11.00, Discrete Math. 311 (2011), 244-251. (2011) Zbl1222.05208MR2739910DOI10.1016/j.disc.2010.11.00
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
- Earl, J., Meulen, K. N. Vander, Tuyl, A. Van, 10.1080/10586458.2015.1091753, Exp. Math. 25 (2016), 441-451. (2016) Zbl1339.05333MR3499708DOI10.1080/10586458.2015.1091753
- Grayson, D. R., Stillman, M. E., Eisenbud, D., Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/. SW: https://swmath.org/software/00537
- Hà, H. T., Tuyl, A. Van, 10.1016/j.jalgebra.2006.08.022, J. Algebra 309 (2007), 405-425. (2007) Zbl1151.13017MR2301246DOI10.1016/j.jalgebra.2006.08.022
- Hà, H. T., Tuyl, A. Van, 10.1007/s10801-007-0079-y, J. Algebr. Comb. 27 (2008), 215-245. (2008) Zbl1147.05051MR2375493DOI10.1007/s10801-007-0079-y
- Hoshino, R., Independence polynomials of circulant graphs, Ph.D. Thesis, Dalhousie University, Halifax (2008). (2008) MR2710951
- Jacques, S., Betti numbers of graph ideals, Ph.D. Thesis, University of Sheffield, Sheffield. Available at https://arxiv.org/abs/math/0410107 (2004). (2004)
- Jacques, S., Katzman, M., The Betti numbers of forests, Available at https://arxiv.org/abs/math/0501226, 2005, 12 pages.
- Katzman, M., 10.1016/j.jcta.2005.04.005, J. Comb. Theory, Ser. A 113 (2006), 435-454. (2006) Zbl1102.13024MR2209703DOI10.1016/j.jcta.2005.04.005
- Mahmoudi, M., Mousivand, A., Tehranian, A., Castelnuovo-Mumford regularity of graph ideals, Ars Comb. 125 (2016), 75-83. (2016) Zbl06644150MR3468037
- Mousivand, A., 10.1080/00927872.2011.605408, Commun. Algebra 40 (2012), 4177-4194. (2012) Zbl1263.13021MR2982931DOI10.1080/00927872.2011.605408
- Mousivand, A., Circulant graphs, Available at https://arxiv.org/abs/1512.08141, 2015, 11 pages.
- Moussi, R., A characterization of certain families of well-covered circulant graphs, M.Sc. Thesis, St. Mary's University, Halifax. Available at http://library2.smu.ca/handle/01/24725, 2012.
- Roth, M., Tuyl, A. Van, 10.1080/00927870601115732, Commun. Algebra 35 (2007), 821-832. (2007) Zbl1123.13012MR2305234DOI10.1080/00927870601115732
- Terai, N., Alexander duality in Stanley-Reisner rings, Affine Algebraic Geometry Osaka University Press, Osaka T. Hibi (2007), 449-462. (2007) Zbl1128.13014MR2330484
- Meulen, K. N. Vander, Tuyl, A. Van, 10.11575/cdm.v12i2.62777, Contrib. Discrete Math. 12 (2017), 63-68. (2017) Zbl1376.05171MR3739053DOI10.11575/cdm.v12i2.62777
- Meulen, K. N. Vander, Tuyl, A. Van, Watt, C., 10.1080/00927872.2012.749886, Commun. Algebra 42 (2014), 1896-1910. (2014) Zbl1327.13077MR3169680DOI10.1080/00927872.2012.749886
- Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904
- Whieldon, G., Jump sequences of edge ideals, Available at https://arxiv.org/abs/1012.0108, 2010, 27 pages.
- Zheng, X., 10.1081/AGB-120037222, Commun. Algebra 32 (2004), 2301-2324. (2004) Zbl1089.13014MR2100472DOI10.1081/AGB-120037222
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.