Betti numbers of some circulant graphs

Mohsen Abdi Makvand; Amir Mousivand

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 593-607
  • ISSN: 0011-4642

Abstract

top
Let o ( n ) be the greatest odd integer less than or equal to n . In this paper we provide explicit formulae to compute -graded Betti numbers of the circulant graphs C 2 n ( 1 , 2 , 3 , 5 , ... , o ( n ) ) . We do this by showing that this graph is the product (or join) of the cycle C n by itself, and computing Betti numbers of C n * C n . We also discuss whether such a graph (more generally, G * H ) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or S 2 .

How to cite

top

Abdi Makvand, Mohsen, and Mousivand, Amir. "Betti numbers of some circulant graphs." Czechoslovak Mathematical Journal 69.3 (2019): 593-607. <http://eudml.org/doc/294601>.

@article{AbdiMakvand2019,
abstract = {Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb \{N\}$-graded Betti numbers of the circulant graphs $C_\{2n\}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.},
author = {Abdi Makvand, Mohsen, Mousivand, Amir},
journal = {Czechoslovak Mathematical Journal},
keywords = {Betti number; Castelnuovo-Mumford regularity; projective dimension; circulant graph},
language = {eng},
number = {3},
pages = {593-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Betti numbers of some circulant graphs},
url = {http://eudml.org/doc/294601},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Abdi Makvand, Mohsen
AU - Mousivand, Amir
TI - Betti numbers of some circulant graphs
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 593
EP - 607
AB - Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb {N}$-graded Betti numbers of the circulant graphs $C_{2n}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.
LA - eng
KW - Betti number; Castelnuovo-Mumford regularity; projective dimension; circulant graph
UR - http://eudml.org/doc/294601
ER -

References

top
  1. Abbott, J., Bigatti, A. M., Robbiano, L., CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it. SW: https://swmath.org/software/00143 
  2. Boros, E., Gurvich, V., Milanič, M., 10.1016/j.disc.2013.11.015, Discrete Math. 318 (2014), 78-95. (2014) Zbl1281.05073MR3141630DOI10.1016/j.disc.2013.11.015
  3. Brown, J., Hoshino, R., 10.1016/j.disc.2008.05.003, Discrete Math. 309 (2009), 2292-2304. (2009) Zbl1228.05178MR2510357DOI10.1016/j.disc.2008.05.003
  4. Brown, J., Hoshino, R., 10.1016/j.disc.2010.11.00, Discrete Math. 311 (2011), 244-251. (2011) Zbl1222.05208MR2739910DOI10.1016/j.disc.2010.11.00
  5. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). (1993) Zbl0788.13005MR1251956DOI10.1017/CBO9780511608681
  6. Earl, J., Meulen, K. N. Vander, Tuyl, A. Van, 10.1080/10586458.2015.1091753, Exp. Math. 25 (2016), 441-451. (2016) Zbl1339.05333MR3499708DOI10.1080/10586458.2015.1091753
  7. Grayson, D. R., Stillman, M. E., Eisenbud, D., Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/. SW: https://swmath.org/software/00537 
  8. Hà, H. T., Tuyl, A. Van, 10.1016/j.jalgebra.2006.08.022, J. Algebra 309 (2007), 405-425. (2007) Zbl1151.13017MR2301246DOI10.1016/j.jalgebra.2006.08.022
  9. Hà, H. T., Tuyl, A. Van, 10.1007/s10801-007-0079-y, J. Algebr. Comb. 27 (2008), 215-245. (2008) Zbl1147.05051MR2375493DOI10.1007/s10801-007-0079-y
  10. Hoshino, R., Independence polynomials of circulant graphs, Ph.D. Thesis, Dalhousie University, Halifax (2008). (2008) MR2710951
  11. Jacques, S., Betti numbers of graph ideals, Ph.D. Thesis, University of Sheffield, Sheffield. Available at https://arxiv.org/abs/math/0410107 (2004). (2004) 
  12. Jacques, S., Katzman, M., The Betti numbers of forests, Available at https://arxiv.org/abs/math/0501226, 2005, 12 pages. 
  13. Katzman, M., 10.1016/j.jcta.2005.04.005, J. Comb. Theory, Ser. A 113 (2006), 435-454. (2006) Zbl1102.13024MR2209703DOI10.1016/j.jcta.2005.04.005
  14. Mahmoudi, M., Mousivand, A., Tehranian, A., Castelnuovo-Mumford regularity of graph ideals, Ars Comb. 125 (2016), 75-83. (2016) Zbl06644150MR3468037
  15. Mousivand, A., 10.1080/00927872.2011.605408, Commun. Algebra 40 (2012), 4177-4194. (2012) Zbl1263.13021MR2982931DOI10.1080/00927872.2011.605408
  16. Mousivand, A., Circulant S 2 graphs, Available at https://arxiv.org/abs/1512.08141, 2015, 11 pages. 
  17. Moussi, R., A characterization of certain families of well-covered circulant graphs, M.Sc. Thesis, St. Mary's University, Halifax. Available at http://library2.smu.ca/handle/01/24725, 2012. 
  18. Roth, M., Tuyl, A. Van, 10.1080/00927870601115732, Commun. Algebra 35 (2007), 821-832. (2007) Zbl1123.13012MR2305234DOI10.1080/00927870601115732
  19. Terai, N., Alexander duality in Stanley-Reisner rings, Affine Algebraic Geometry Osaka University Press, Osaka T. Hibi (2007), 449-462. (2007) Zbl1128.13014MR2330484
  20. Meulen, K. N. Vander, Tuyl, A. Van, 10.11575/cdm.v12i2.62777, Contrib. Discrete Math. 12 (2017), 63-68. (2017) Zbl1376.05171MR3739053DOI10.11575/cdm.v12i2.62777
  21. Meulen, K. N. Vander, Tuyl, A. Van, Watt, C., 10.1080/00927872.2012.749886, Commun. Algebra 42 (2014), 1896-1910. (2014) Zbl1327.13077MR3169680DOI10.1080/00927872.2012.749886
  22. Villarreal, R. H., Monomial Algebras, Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). (2001) Zbl1002.13010MR1800904
  23. Whieldon, G., Jump sequences of edge ideals, Available at https://arxiv.org/abs/1012.0108, 2010, 27 pages. 
  24. Zheng, X., 10.1081/AGB-120037222, Commun. Algebra 32 (2004), 2301-2324. (2004) Zbl1089.13014MR2100472DOI10.1081/AGB-120037222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.