Congruences and homomorphisms on Ω -algebras

Elijah Eghosa Edeghagba; Branimir Šešelja; Andreja Tepavčević

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 892-910
  • ISSN: 0023-5954

Abstract

top
The topic of the paper are Ω -algebras, where Ω is a complete lattice. In this research we deal with congruences and homomorphisms. An Ω -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an Ω -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω -valued congruences, corresponding quotient Ω -algebras and Ω -homomorphisms and we investigate connections among these notions. We prove that there is an Ω -homomorphism from an Ω -algebra to the corresponding quotient Ω -algebra. The kernel of an Ω -homomorphism is an Ω -valued congruence. When dealing with cut structures, we prove that an Ω -homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an Ω -congruence determines a closure system of classical congruences on cut subalgebras. Finally, identities are preserved under Ω -homomorphisms.

How to cite

top

Eghosa Edeghagba, Elijah, Šešelja, Branimir, and Tepavčević, Andreja. "Congruences and homomorphisms on $\Omega $-algebras." Kybernetika 53.5 (2017): 892-910. <http://eudml.org/doc/294602>.

@article{EghosaEdeghagba2017,
abstract = {The topic of the paper are $\Omega $-algebras, where $\Omega $ is a complete lattice. In this research we deal with congruences and homomorphisms. An $\Omega $-algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an $\Omega $-valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce $\Omega $-valued congruences, corresponding quotient $\Omega $-algebras and $\Omega $-homomorphisms and we investigate connections among these notions. We prove that there is an $\Omega $-homomorphism from an $\Omega $-algebra to the corresponding quotient $\Omega $-algebra. The kernel of an $\Omega $-homomorphism is an $\Omega $-valued congruence. When dealing with cut structures, we prove that an $\Omega $-homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an $\Omega $-congruence determines a closure system of classical congruences on cut subalgebras. Finally, identities are preserved under $\Omega $-homomorphisms.},
author = {Eghosa Edeghagba, Elijah, Šešelja, Branimir, Tepavčević, Andreja},
journal = {Kybernetika},
keywords = {lattice-valued algebra; congruence; homomorphism},
language = {eng},
number = {5},
pages = {892-910},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Congruences and homomorphisms on $\Omega $-algebras},
url = {http://eudml.org/doc/294602},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Eghosa Edeghagba, Elijah
AU - Šešelja, Branimir
AU - Tepavčević, Andreja
TI - Congruences and homomorphisms on $\Omega $-algebras
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 892
EP - 910
AB - The topic of the paper are $\Omega $-algebras, where $\Omega $ is a complete lattice. In this research we deal with congruences and homomorphisms. An $\Omega $-algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an $\Omega $-valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce $\Omega $-valued congruences, corresponding quotient $\Omega $-algebras and $\Omega $-homomorphisms and we investigate connections among these notions. We prove that there is an $\Omega $-homomorphism from an $\Omega $-algebra to the corresponding quotient $\Omega $-algebra. The kernel of an $\Omega $-homomorphism is an $\Omega $-valued congruence. When dealing with cut structures, we prove that an $\Omega $-homomorphism determines classical homomorphisms among the corresponding quotient structures over cut subalgebras. In addition, an $\Omega $-congruence determines a closure system of classical congruences on cut subalgebras. Finally, identities are preserved under $\Omega $-homomorphisms.
LA - eng
KW - lattice-valued algebra; congruence; homomorphism
UR - http://eudml.org/doc/294602
ER -

References

top
  1. Ajmal, N., Thomas, K. V., 10.1016/0020-0255(94)90124-4, Inform. Sci. 79 (1994), 271-291. MR1282402DOI10.1016/0020-0255(94)90124-4
  2. Bělohlávek, R., 10.1007/978-1-4615-0633-1, Kluwer Academic/Plenum Publishers, New York 2002. DOI10.1007/978-1-4615-0633-1
  3. Bělohlávek, R., Vychodil, V., 10.1016/j.fss.2005.05.044, Fuzzy Sets and Systems 157 (2006), 161-201. MR2186221DOI10.1016/j.fss.2005.05.044
  4. Bělohlávek, R., Vychodil, V., 10.1007/11376422_3, Studies in Fuzziness and Soft Computing, Springer 186 (2005), pp. 139-170. DOI10.1007/11376422_3
  5. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A., 10.1016/j.ins.2013.11.007, Inform. Sci. 266 (2014), 148-159. MR3165413DOI10.1016/j.ins.2013.11.007
  6. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A., Fuzzy equational classes are fuzzy varieties., Iranian J. Fuzzy Systems 10 (2013), 1-18. MR3135796
  7. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A., 10.1109/fuzz-ieee.2012.6251259, In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference, pp. 1-6. MR3135796DOI10.1109/fuzz-ieee.2012.6251259
  8. Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A., 10.1016/j.fss.2015.03.011, Fuzzy Sets and Systems 289 (2016), 94-112. MR3454464DOI10.1016/j.fss.2015.03.011
  9. Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3, Grauate Texts in Mathematics, 1981. Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3
  10. Czédli, G., Erné, M., Šešelja, B., Tepavčević, A., 10.1007/s00012-010-0059-2, Algebra Univers. 62 (2009), 399-418. MR2670173DOI10.1007/s00012-010-0059-2
  11. Demirci, M., 10.1080/0308107031000090765, Int. J. General Systems 32 (2003), 3, 123-155, 157-175, 177-201. MR1967128DOI10.1080/0308107031000090765
  12. Demirci, M., 10.1016/j.fss.2004.06.017, Fuzzy Sets and Systems 151 (2005), 437-472. MR2126168DOI10.1016/j.fss.2004.06.017
  13. Demirci, M., 10.1016/j.fss.2004.06.004, Fuzzy Sets and Systems 151 (2005), 473-489. MR2126169DOI10.1016/j.fss.2004.06.004
  14. Nola, A. Di, Gerla, G., Lattice valued algebras., Stochastica 11 (1987), 137-150. MR0990882
  15. Edeghagba, E. E., Šešelja, B., Tepavčević, A., 10.1016/j.fss.2016.10.011, Fuzzy Sets and Systems 311 (2017), 53-69. MR3597106DOI10.1016/j.fss.2016.10.011
  16. Fourman, M. P., Scott, D. S., 10.1007/bfb0061824, In: Applications of Sheaves (M. P. Fourman, C. J. Mulvey and D. S. Scott, eds.), Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York 1979, pp. 302-401. MR0555551DOI10.1007/bfb0061824
  17. Goguen, J. A., 10.1016/0022-247x(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145-174. Zbl0145.24404MR0224391DOI10.1016/0022-247x(67)90189-8
  18. Gottwald, S., 10.1007/s11225-006-9001-1, Studia Logica 84 (2006) 1, 23-50, 1143-1174. MR2271287DOI10.1007/s11225-006-9001-1
  19. Höhle, U., 10.1016/0165-0114(88)90080-2, Fuzzy Sets and Systems 27 (1988), 31-44. MR0950448DOI10.1016/0165-0114(88)90080-2
  20. Höhle, U., 10.1016/j.fss.2006.12.009, Fuzzy Sets and Systems 158 (2007), 11, 1143-1174. MR2314674DOI10.1016/j.fss.2006.12.009
  21. Höhle, U., Šostak, A. P., 10.1007/978-1-4615-5079-2_5, Springer US, 1999, pp. 123-272. MR1788903DOI10.1007/978-1-4615-5079-2_5
  22. Klir, G., Yuan, B., Fuzzy Sets and Fuzzy Logic., Prentice Hall, New Jersey 1995. MR1329731
  23. Šešelja, B., Tepavčević, A., 10.1016/0165-0114(94)90249-6, Fuzzy Sets and Systems 65 (1994), 85-94. MR1294042DOI10.1016/0165-0114(94)90249-6
  24. Šešelja, B., Tepavčević, A., 10.1109/fuzzy.2009.5277317, In: Proc. 2009 IEEE International Conference on Fuzzy Systems, pp. 1660-1664. DOI10.1109/fuzzy.2009.5277317

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.