Locally pointwise superconvergence of the tensor-product finite element in three dimensions

Jinghong Liu; Liu, Wen; Qiding Zhu

Applications of Mathematics (2019)

  • Volume: 64, Issue: 4, page 383-396
  • ISSN: 0862-7940

Abstract

top
Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as L 2 -norms, W 1 , -norms, and negative-norms in locally smooth subsets of the domain Ω , locally pointwise superconvergence occurs in function values and derivatives.

How to cite

top

Liu, Jinghong, Liu, Wen, and Zhu, Qiding. "Locally pointwise superconvergence of the tensor-product finite element in three dimensions." Applications of Mathematics 64.4 (2019): 383-396. <http://eudml.org/doc/294603>.

@article{Liu2019,
abstract = {Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as $L^2$-norms, $W^\{1,\infty \}$-norms, and negative-norms in locally smooth subsets of the domain $\Omega $, locally pointwise superconvergence occurs in function values and derivatives.},
author = {Liu, Jinghong, Liu, Wen, Zhu, Qiding},
journal = {Applications of Mathematics},
keywords = {tensor-product finite element; local superconvergence; discrete Green's function},
language = {eng},
number = {4},
pages = {383-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally pointwise superconvergence of the tensor-product finite element in three dimensions},
url = {http://eudml.org/doc/294603},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Liu, Jinghong
AU - Liu, Wen
AU - Zhu, Qiding
TI - Locally pointwise superconvergence of the tensor-product finite element in three dimensions
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 383
EP - 396
AB - Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as $L^2$-norms, $W^{1,\infty }$-norms, and negative-norms in locally smooth subsets of the domain $\Omega $, locally pointwise superconvergence occurs in function values and derivatives.
LA - eng
KW - tensor-product finite element; local superconvergence; discrete Green's function
UR - http://eudml.org/doc/294603
ER -

References

top
  1. Brandts, J., Křížek, M., History and future of superconvergence in three-dimensional finite element methods, Finite Element Methods. Three-Dimensional Problems P. Neittaanmäki, M. Křížek GAKUTO International Series. Mathematical Science Applications 15, Gakkotosho, Tokyo (2001), 22-33. (2001) Zbl0994.65114MR1896264
  2. Brandts, J., Křížek, M., 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489-505. (2003) Zbl1042.65081MR1987941DOI10.1093/imanum/23.3.489
  3. Brandts, J., Křížek, M., Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27-36. (2005) Zbl1072.65137MR2124141
  4. Chen, C. M., Optimal points of stresses for the linear tetrahedral element, Nat. Sci. J. Xiangtan Univ. 3 (1980), 16-24 Chinese. (1980) 
  5. Chen, C. M., Construction Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Changsha (2001), Chinese. (2001) 
  6. Chen, L., Superconvergence of tetrahedral linear finite elements, Int. J. Numer. Anal. Model. 3 (2006), 273-282. (2006) Zbl1100.65084MR2237882
  7. J. Douglas, Jr., T. Dupont, M. F. Wheeler, 10.1051/m2an/197408r200611, Rev. Franc. Automat. Inform. Rech. Operat., Analyse Numer. 8 (1974), 61-66. (1974) Zbl0315.65062MR0359358DOI10.1051/m2an/197408r200611
  8. Goodsell, G., Gradient Superconvergence for Piecewise Linear Tetrahedral Finite Elements, Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory (1990). (1990) 
  9. Goodsell, G., 10.1002/num.1690100511, Numer. Methods Partial Differ. Equations 10 (1994), 651-666. (1994) Zbl0807.65112MR1290950DOI10.1002/num.1690100511
  10. Hannukainen, A., Korotov, S., Křížek, M., 10.4208/jcm.2009.09-m1004, J. Comput. Math. 28 (2010), 1-10. (2010) Zbl1224.65247MR2603577DOI10.4208/jcm.2009.09-m1004
  11. He, W. M., Guan, X. F., Cui, J. Z., 10.1016/j.jmaa.2011.10.031, J. Math. Anal. Appl. 388 (2012), 863-872. (2012) Zbl1237.65115MR2869793DOI10.1016/j.jmaa.2011.10.031
  12. Kantchev, V., Lazarov, R., Superconvergence of the gradient of linear finite elements for 3D Poisson equation, Proc. Int. Symp. Optimal Algorithms B. Sendov Bulgarian Academy of Sciences, Sofia (1986), 172-182. (1986) Zbl0672.65088MR1171706
  13. Lin, Q., Yan, N. N., Construction and Analysis of High Efficient Finite Elements, Hebei University Press, Baoding (1996), Chinese. (1996) 
  14. Lin, R., Zhang, Z., 10.1137/070681168, SIAM J. Numer. Anal. 46 (2008), 1281-1297. (2008) Zbl1168.65059MR2390994DOI10.1137/070681168
  15. Liu, J., Jia, B., Zhu, Q., 10.1016/j.jmaa.2010.05.002, J. Math. Anal. Appl. 370 (2010), 350-363. (2010) Zbl1194.35013MR2651658DOI10.1016/j.jmaa.2010.05.002
  16. Liu, J., Sun, H., Zhu, Q., 10.1007/s11425-009-0039-1, Sci. China, Ser. A 52 (2009), 959-972. (2009) Zbl1183.65145MR2505002DOI10.1007/s11425-009-0039-1
  17. Liu, J., Zhu, Q., Estimate for the W 1 , 1 -seminorm of discrete derivative Green’s function in three dimensions, J. Hunan Univ. Arts Sci., Nat. Sci. 16 (2004), 1-3 Chinese. (2004) Zbl1134.35344MR2139634
  18. Liu, J., Zhu, Q., Maximum-norm superapproximation of the gradient for quadratic finite elements in three dimensions, Acta Math. Sci., Ser. A, Chin. Ed. 26 (2006), 458-466 Chinese. (2006) Zbl1154.65371MR2243664
  19. Liu, J., Zhu, Q., 10.1002/num.20384, Numer. Methods Partial Differ. Equations 25 (2009), 990-1008. (2009) Zbl1178.65137MR2526993DOI10.1002/num.20384
  20. Liu, J., Zhu, Q., 10.1002/num.20510, Numer. Methods Partial Differ. Equations 26 (2010), 1572-1580. (2010) Zbl1204.65135MR2732397DOI10.1002/num.20510
  21. Pehlivanov, A., Superconvergence of the gradient for quadratic 3D simplex finite elements, Proceedings of the Conference on Numerical Methods and Application Bulgarian Academy of Sciences, Sofia (1989), 362-366. (1989) MR1027639
  22. Schatz, A. H., Sloan, I. H., Wahlbin, L. B., 10.1137/0733027, SIAM J. Numer. Anal. 33 (1996), 505-521. (1996) Zbl0855.65115MR1388486DOI10.1137/0733027
  23. Zhang, Z., Lin, R., Locating natural superconvergent points of finite element methods in 3D, Int. J. Numer. Anal. Model. 2 (2005), 19-30. (2005) Zbl1071.65140MR2112655
  24. Zhu, Q., Lin, Q., Superconvergence Theory of the Finite Element Methods, Hunan Science and Technology Press, Changsha (1989), Chinese. (1989) MR1200243
  25. Zlámal, M., 10.2307/2006479, Math. Comput. 32 (1978), 663-685. (1978) Zbl0448.65068MR0495027DOI10.2307/2006479

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.