Locally pointwise superconvergence of the tensor-product finite element in three dimensions
Jinghong Liu; Liu, Wen; Qiding Zhu
Applications of Mathematics (2019)
- Volume: 64, Issue: 4, page 383-396
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Jinghong, Liu, Wen, and Zhu, Qiding. "Locally pointwise superconvergence of the tensor-product finite element in three dimensions." Applications of Mathematics 64.4 (2019): 383-396. <http://eudml.org/doc/294603>.
@article{Liu2019,
abstract = {Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as $L^2$-norms, $W^\{1,\infty \}$-norms, and negative-norms in locally smooth subsets of the domain $\Omega $, locally pointwise superconvergence occurs in function values and derivatives.},
author = {Liu, Jinghong, Liu, Wen, Zhu, Qiding},
journal = {Applications of Mathematics},
keywords = {tensor-product finite element; local superconvergence; discrete Green's function},
language = {eng},
number = {4},
pages = {383-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally pointwise superconvergence of the tensor-product finite element in three dimensions},
url = {http://eudml.org/doc/294603},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Liu, Jinghong
AU - Liu, Wen
AU - Zhu, Qiding
TI - Locally pointwise superconvergence of the tensor-product finite element in three dimensions
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 383
EP - 396
AB - Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as $L^2$-norms, $W^{1,\infty }$-norms, and negative-norms in locally smooth subsets of the domain $\Omega $, locally pointwise superconvergence occurs in function values and derivatives.
LA - eng
KW - tensor-product finite element; local superconvergence; discrete Green's function
UR - http://eudml.org/doc/294603
ER -
References
top- Brandts, J., Křížek, M., History and future of superconvergence in three-dimensional finite element methods, Finite Element Methods. Three-Dimensional Problems P. Neittaanmäki, M. Křížek GAKUTO International Series. Mathematical Science Applications 15, Gakkotosho, Tokyo (2001), 22-33. (2001) Zbl0994.65114MR1896264
- Brandts, J., Křížek, M., 10.1093/imanum/23.3.489, IMA J. Numer. Anal. 23 (2003), 489-505. (2003) Zbl1042.65081MR1987941DOI10.1093/imanum/23.3.489
- Brandts, J., Křížek, M., Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math. 23 (2005), 27-36. (2005) Zbl1072.65137MR2124141
- Chen, C. M., Optimal points of stresses for the linear tetrahedral element, Nat. Sci. J. Xiangtan Univ. 3 (1980), 16-24 Chinese. (1980)
- Chen, C. M., Construction Theory of Superconvergence of Finite Elements, Hunan Science and Technology Press, Changsha (2001), Chinese. (2001)
- Chen, L., Superconvergence of tetrahedral linear finite elements, Int. J. Numer. Anal. Model. 3 (2006), 273-282. (2006) Zbl1100.65084MR2237882
- J. Douglas, Jr., T. Dupont, M. F. Wheeler, 10.1051/m2an/197408r200611, Rev. Franc. Automat. Inform. Rech. Operat., Analyse Numer. 8 (1974), 61-66. (1974) Zbl0315.65062MR0359358DOI10.1051/m2an/197408r200611
- Goodsell, G., Gradient Superconvergence for Piecewise Linear Tetrahedral Finite Elements, Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory (1990). (1990)
- Goodsell, G., 10.1002/num.1690100511, Numer. Methods Partial Differ. Equations 10 (1994), 651-666. (1994) Zbl0807.65112MR1290950DOI10.1002/num.1690100511
- Hannukainen, A., Korotov, S., Křížek, M., 10.4208/jcm.2009.09-m1004, J. Comput. Math. 28 (2010), 1-10. (2010) Zbl1224.65247MR2603577DOI10.4208/jcm.2009.09-m1004
- He, W. M., Guan, X. F., Cui, J. Z., 10.1016/j.jmaa.2011.10.031, J. Math. Anal. Appl. 388 (2012), 863-872. (2012) Zbl1237.65115MR2869793DOI10.1016/j.jmaa.2011.10.031
- Kantchev, V., Lazarov, R., Superconvergence of the gradient of linear finite elements for 3D Poisson equation, Proc. Int. Symp. Optimal Algorithms B. Sendov Bulgarian Academy of Sciences, Sofia (1986), 172-182. (1986) Zbl0672.65088MR1171706
- Lin, Q., Yan, N. N., Construction and Analysis of High Efficient Finite Elements, Hebei University Press, Baoding (1996), Chinese. (1996)
- Lin, R., Zhang, Z., 10.1137/070681168, SIAM J. Numer. Anal. 46 (2008), 1281-1297. (2008) Zbl1168.65059MR2390994DOI10.1137/070681168
- Liu, J., Jia, B., Zhu, Q., 10.1016/j.jmaa.2010.05.002, J. Math. Anal. Appl. 370 (2010), 350-363. (2010) Zbl1194.35013MR2651658DOI10.1016/j.jmaa.2010.05.002
- Liu, J., Sun, H., Zhu, Q., 10.1007/s11425-009-0039-1, Sci. China, Ser. A 52 (2009), 959-972. (2009) Zbl1183.65145MR2505002DOI10.1007/s11425-009-0039-1
- Liu, J., Zhu, Q., Estimate for the -seminorm of discrete derivative Green’s function in three dimensions, J. Hunan Univ. Arts Sci., Nat. Sci. 16 (2004), 1-3 Chinese. (2004) Zbl1134.35344MR2139634
- Liu, J., Zhu, Q., Maximum-norm superapproximation of the gradient for quadratic finite elements in three dimensions, Acta Math. Sci., Ser. A, Chin. Ed. 26 (2006), 458-466 Chinese. (2006) Zbl1154.65371MR2243664
- Liu, J., Zhu, Q., 10.1002/num.20384, Numer. Methods Partial Differ. Equations 25 (2009), 990-1008. (2009) Zbl1178.65137MR2526993DOI10.1002/num.20384
- Liu, J., Zhu, Q., 10.1002/num.20510, Numer. Methods Partial Differ. Equations 26 (2010), 1572-1580. (2010) Zbl1204.65135MR2732397DOI10.1002/num.20510
- Pehlivanov, A., Superconvergence of the gradient for quadratic 3D simplex finite elements, Proceedings of the Conference on Numerical Methods and Application Bulgarian Academy of Sciences, Sofia (1989), 362-366. (1989) MR1027639
- Schatz, A. H., Sloan, I. H., Wahlbin, L. B., 10.1137/0733027, SIAM J. Numer. Anal. 33 (1996), 505-521. (1996) Zbl0855.65115MR1388486DOI10.1137/0733027
- Zhang, Z., Lin, R., Locating natural superconvergent points of finite element methods in 3D, Int. J. Numer. Anal. Model. 2 (2005), 19-30. (2005) Zbl1071.65140MR2112655
- Zhu, Q., Lin, Q., Superconvergence Theory of the Finite Element Methods, Hunan Science and Technology Press, Changsha (1989), Chinese. (1989) MR1200243
- Zlámal, M., 10.2307/2006479, Math. Comput. 32 (1978), 663-685. (1978) Zbl0448.65068MR0495027DOI10.2307/2006479
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.