An L estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials

Jim Jr. Douglas; Todd Dupont; Mary Fanett Wheeler

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1974)

  • Volume: 8, Issue: R2, page 61-66
  • ISSN: 0764-583X

How to cite

top

Douglas, Jim Jr., Dupont, Todd, and Wheeler, Mary Fanett. "An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 8.R2 (1974): 61-66. <http://eudml.org/doc/193260>.

@article{Douglas1974,
author = {Douglas, Jim Jr., Dupont, Todd, Wheeler, Mary Fanett},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {R2},
pages = {61-66},
publisher = {Dunod},
title = {An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials},
url = {http://eudml.org/doc/193260},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Douglas, Jim Jr.
AU - Dupont, Todd
AU - Wheeler, Mary Fanett
TI - An $L^\infty $ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1974
PB - Dunod
VL - 8
IS - R2
SP - 61
EP - 66
LA - eng
UR - http://eudml.org/doc/193260
ER -

References

top
  1. [1] J. H. BRAMBLE and J. E. OSBORN, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp., 27 (1973), 525-549. Zbl0305.65064MR366029
  2. [2] J. Jr DOUGLAS, and T. DUPONTGalerkin approximations for the two point boundary problem using continuous piecewise-polynomial spaces, Numer. Math.,, 22 (1974), 99-109. Zbl0331.65051MR362922
  3. [3] J. Jr DOUGLAS, and T. DUPONT, Superconvergence for Galerkin methods for the two point boundary problem via local projections, Numer. Math., 21 (1973), 270-278. Zbl0281.65046MR331798
  4. [4] J. Jr. DOUGLAS, T. DUPONT and L. WAHLBIN, Optimal L∞ error estimates for Galerkin approximations to solutions of two point boundary problems, to appear. Zbl0306.65053
  5. [5] J. Jr. DOUGLAS, T. DUPONT and M. F. WHEELER, A quasi-projection approximation applied to Galerkin procedures for parabolic and hyperbolic equations, to appear. 
  6. [6] J. Jr. DOUGLAS, T. DUPONT and M. F. WHEELER, A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems, this Journal, 47-59. Zbl0315.65063MR359357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.