Some approximate fixed point theorems without continuity of the operator using auxiliary functions
Sumit Chandok; Arslan Hojjat Ansari; Tulsi Dass Narang
Mathematica Bohemica (2019)
- Volume: 144, Issue: 3, page 251-271
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChandok, Sumit, Ansari, Arslan Hojjat, and Narang, Tulsi Dass. "Some approximate fixed point theorems without continuity of the operator using auxiliary functions." Mathematica Bohemica 144.3 (2019): 251-271. <http://eudml.org/doc/294623>.
@article{Chandok2019,
abstract = {We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses.},
author = {Chandok, Sumit, Ansari, Arslan Hojjat, Narang, Tulsi Dass},
journal = {Mathematica Bohemica},
keywords = {$\varepsilon $-fixed point; $\alpha $-admissible mapping; partial generalized convex contraction of order $4$ and rank $4$; $\alpha $-complete metric space},
language = {eng},
number = {3},
pages = {251-271},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some approximate fixed point theorems without continuity of the operator using auxiliary functions},
url = {http://eudml.org/doc/294623},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Chandok, Sumit
AU - Ansari, Arslan Hojjat
AU - Narang, Tulsi Dass
TI - Some approximate fixed point theorems without continuity of the operator using auxiliary functions
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 251
EP - 271
AB - We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses.
LA - eng
KW - $\varepsilon $-fixed point; $\alpha $-admissible mapping; partial generalized convex contraction of order $4$ and rank $4$; $\alpha $-complete metric space
UR - http://eudml.org/doc/294623
ER -
References
top- Ansari, A. H., Shukla, S., Some fixed point theorems for ordered --contraction and subcontraction in 0--orbitally complete partial metric spaces, J. Adv. Math. Stud. 9 (2016), 37-53. (2016) Zbl1353.54030MR3495331
- Berinde, M., Approximate fixed point theorems, Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. (2006) Zbl1164.54028MR2246435
- Browder, F. E., Petryshyn, W. V., 10.1090/S0002-9904-1966-11544-6, Bull. Am. Math. Soc. 72 (1966), 571-575. (1966) Zbl0138.08202MR0190745DOI10.1090/S0002-9904-1966-11544-6
- Chandok, S., Ansari, A. H., 10.23952/cot.2017.27, Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. (2017) DOI10.23952/cot.2017.27
- Dey, D., Laha, A. K., Saha, M., 10.1155/2013/962058, J. Math. 2013 (2013), Article No. 962058, 4 pages. (2013) Zbl1268.54022MR3100732DOI10.1155/2013/962058
- Dey, D., Saha, M., Approximate fixed point of Reich operator, Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. (2013) Zbl1324.54067MR3028154
- Hussain, N., Kutbi, M. A., Salimi, P., 10.1155/2014/280817, Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. (2014) MR3166589DOI10.1155/2014/280817
- Istrăţescu, V. I., 10.1007/BF01761490, Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. (1982) Zbl0477.54033MR0663966DOI10.1007/BF01761490
- Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć., 10.22436/jnsa.010.04.32, J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. (2017) MR3639736DOI10.22436/jnsa.010.04.32
- Kohlenbach, U., Leuştean, L., 10.1016/j.na.2005.12.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. (2007) Zbl1118.47047MR2288433DOI10.1016/j.na.2005.12.020
- Latif, A., Sintunavarat, W., Ninsri, A., 10.11650/tjm.19.2015.4746, Taiwanese J. Math. 19 (2015), 315-333. (2015) Zbl1357.54034MR3313418DOI10.11650/tjm.19.2015.4746
- Miandaragh, M. A., Postolache, M., Rezapour, S., 10.1186/1687-1812-2013-255, Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. (2013) Zbl1321.54089MR3213091DOI10.1186/1687-1812-2013-255
- Reich, S., 10.1016/0022-247X(78)90222-6, J. Math. Anal. Appl. 62 (1978), 104-113. (1978) Zbl0375.47031MR0514991DOI10.1016/0022-247X(78)90222-6
- Samet, B., Vetro, C., Vetro, P., 10.1016/j.na.2011.10.014, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. (2012) Zbl1242.54027MR2870907DOI10.1016/j.na.2011.10.014
- Tijs, S., Torre, A., Brânzei, R., Approximate fixed point theorems, Libertas Math. 23 (2003), 35-39 9999MR99999 2002283 . (2003) Zbl1056.47046MR2002283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.