Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species
Luciana Assis; Malay Banerjee; Moiseis Cecconello; Ezio Venturino
Applications of Mathematics (2018)
- Volume: 63, Issue: 5, page 569-600
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAssis, Luciana, et al. "Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species." Applications of Mathematics 63.5 (2018): 569-600. <http://eudml.org/doc/294637>.
@article{Assis2018,
abstract = {The paper deals with two mathematical models of predator-prey type where a transmissible disease spreads among the predator species only. The proposed models are analyzed and compared in order to assess the influence of hidden and explicit alternative resource for predator. The analysis shows boundedness as well as local stability and transcritical bifurcations for equilibria of systems. Numerical simulations support our theoretical analysis.},
author = {Assis, Luciana, Banerjee, Malay, Cecconello, Moiseis, Venturino, Ezio},
journal = {Applications of Mathematics},
keywords = {hidden prey; explicit prey; bifurcation; predator-prey model},
language = {eng},
number = {5},
pages = {569-600},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species},
url = {http://eudml.org/doc/294637},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Assis, Luciana
AU - Banerjee, Malay
AU - Cecconello, Moiseis
AU - Venturino, Ezio
TI - Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 5
SP - 569
EP - 600
AB - The paper deals with two mathematical models of predator-prey type where a transmissible disease spreads among the predator species only. The proposed models are analyzed and compared in order to assess the influence of hidden and explicit alternative resource for predator. The analysis shows boundedness as well as local stability and transcritical bifurcations for equilibria of systems. Numerical simulations support our theoretical analysis.
LA - eng
KW - hidden prey; explicit prey; bifurcation; predator-prey model
UR - http://eudml.org/doc/294637
ER -
References
top- Chakraborty, K., Das, S. S., 10.1007/s10441-014-9217-9, Acta Biotheoretica 62 (2014), 183-205. (2014) DOI10.1007/s10441-014-9217-9
- Clark, C. W., Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley-Interscience Publication, John Wiley & Sons, New York (1990). (1990) Zbl0712.90018MR1044994
- Assis, L. M. E. de, Banerjee, M., Venturino, E., 10.1007/s11565-018-0298-2, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64 (2018), 259-283. (2018) MR3857003DOI10.1007/s11565-018-0298-2
- Assis, L. M. E. de, Banerjee, M., Venturino, E., Comparison of hidden and explicit resources in ecoepidemic models of predator-prey type, (to appear) in Comput. Appl. Math.
- Freedman, H. I., 10.2307/3556198, Monographs and Textbooks in Pure and Applied Mathematics 57, Marcel Dekker, New York (1980). (1980) Zbl0448.92023MR0586941DOI10.2307/3556198
- Goel, N. S., Maitra, S. C., Montroll, E. W., 10.1103/RevModPhys.43.231, Rev. Mod. Phys. 43 (1971), 231-276. (1971) MR0484546DOI10.1103/RevModPhys.43.231
- Haque, M., Li, B. L., Rahman, M. S., Venturino, E., 10.1016/j.ecocom.2014.04.001, Ecological Complexity 20 (2014), 248-256. (2014) DOI10.1016/j.ecocom.2014.04.001
- Haque, M., Rahman, M. S., Venturino, E., 10.1016/j.biosystems.2013.06.002, BioSystems 114 (2013), 98-117. (2013) DOI10.1016/j.biosystems.2013.06.002
- Hixon, M. A., 10.1016/0040-5809(91)90035-E, Theor. Popul. Biol. 39 (1991), 178-200. (1991) DOI10.1016/0040-5809(91)90035-E
- Lotka, A. J., 10.1021/j150111a004, J. Phys. Chem. 14 (1910), 271-274. (1910) DOI10.1021/j150111a004
- Lotka, A. J., 10.1073/pnas.6.7.410, Proc. Natl. Acad. Sci. USA 6 (1920), 410-415. (1920) DOI10.1073/pnas.6.7.410
- Murray, J. D., 10.1007/978-3-662-08539-4, Biomathematics 19, Springer, Berlin (1989). (1989) Zbl0682.92001MR1007836DOI10.1007/978-3-662-08539-4
- Perko, L., 10.1007/978-1-4613-0003-8, Texts in Applied Mathematics 7, Springer, New York (2001). (2001) Zbl0973.34001MR1801796DOI10.1007/978-1-4613-0003-8
- Venturino, E., 10.1216/rmjm/1181072471, Rocky Mt. J. Math. 24 (1994), 381-402. (1994) Zbl0799.92017MR1270046DOI10.1216/rmjm/1181072471
- Venturino, E., 10.1051/mmnp/201611104, Math. Model. Nat. Phenom. 11 (2016), 49-90. (2016) Zbl1384.92060MR3452635DOI10.1051/mmnp/201611104
- Volterra, V., Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Memorie Acdad. d. L. Roma 2 (1927), 31-113 Italian 9999JFM99999 52.0450.06. (1927)
- Volterra, V., 10.1093/icesjms/3.1.3, ICES Journal of Marine Science 3 (1928), 3-5. (1928) DOI10.1093/icesjms/3.1.3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.