Some globally determined classes of graphs

Ivica Bošnjak; Rozália Madarász

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 633-646
  • ISSN: 0011-4642

Abstract

top
For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.

How to cite

top

Bošnjak, Ivica, and Madarász, Rozália. "Some globally determined classes of graphs." Czechoslovak Mathematical Journal 68.3 (2018): 633-646. <http://eudml.org/doc/294645>.

@article{Bošnjak2018,
abstract = {For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.},
author = {Bošnjak, Ivica, Madarász, Rozália},
journal = {Czechoslovak Mathematical Journal},
keywords = {globals of graphs; global determination; isomorphism},
language = {eng},
number = {3},
pages = {633-646},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some globally determined classes of graphs},
url = {http://eudml.org/doc/294645},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Bošnjak, Ivica
AU - Madarász, Rozália
TI - Some globally determined classes of graphs
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 633
EP - 646
AB - For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
LA - eng
KW - globals of graphs; global determination; isomorphism
UR - http://eudml.org/doc/294645
ER -

References

top
  1. Baker, K. A., McNulty, G. F., Werner, H., The finitely based varieties of graph algebras, Acta Sci. Math. 51 (1987), 3-15. (1987) Zbl0629.08003MR0911554
  2. Baumann, U., Pöschel, R., Schmeichel, I., Power graphs, J. Inf. Process. Cybern. 30 (1994), 135-142. (1994) Zbl0834.05042
  3. Bošnjak, I., Madarász, R., On power structures, Algebra Discrete Math. 2003 (2003), 14-35. (2003) Zbl1063.08001MR2048654
  4. Brink, C., 10.1007/BF01196091, Algebra Univers. 30 (1993), 177-216. (1993) Zbl0787.08001MR1223628DOI10.1007/BF01196091
  5. Diestel, R., 10.1007/978-3-662-53622-3, Graduate Texts in Mathematics 173 Springer, Berlin (2000). (2000) Zbl0945.05002MR1743598DOI10.1007/978-3-662-53622-3
  6. Drápal, A., Globals of unary algebras, Czech. Math. J. 35 (1985), 52-58. (1985) Zbl0579.08004MR0779335
  7. Goldblatt, R., 10.1016/0168-0072(89)90032-8, Ann. Pure Appl. Logic 44 (1989), 173-242. (1989) Zbl0722.08005MR1020344DOI10.1016/0168-0072(89)90032-8
  8. Gould, M., Iskra, J. A., Tsinakis, C., 10.1007/BF02573341, Semigroup Forum 29 (1984), 365-374. (1984) Zbl0553.20036MR0747778DOI10.1007/BF02573341
  9. Herchl, J., Jakubíková-Studenovská, D., 10.1007/s00500-007-0168-9, Soft Comput. 11 (2007), 1107-1112. (2007) Zbl1123.08001DOI10.1007/s00500-007-0168-9
  10. Kobayashi, Y., 10.1007/BF02573326, Semigroup Forum 29 (1984), 217-222. (1984) Zbl0537.20034MR0742134DOI10.1007/BF02573326
  11. Korczyński, W., 10.1515/dema-1997-0412, Demonstr. Math. 30 (1997), 809-828. (1997) Zbl0902.68077MR1617274DOI10.1515/dema-1997-0412
  12. Korczyński, W., 10.1515/dema-1998-0123, Demonstr. Math. 31 (1998), 179-192. (1998) Zbl0899.68063MR1623839DOI10.1515/dema-1998-0123
  13. Lovász, L., 10.1007/BF02029172, Period. Math. Hung. 1 (1971), 145-156. (1971) Zbl0223.08002MR0284391DOI10.1007/BF02029172
  14. Lukács, E., Globals of G -algebras, Houston J. Math. 13 (1987), 241-244. (1987) Zbl0629.08002MR0904955
  15. McNulty, G. F., Shallon, C. R., 10.1007/BFb0063439, Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. (1983) Zbl0513.08003MR0716184DOI10.1007/BFb0063439
  16. Mogiljanskaja, E. M., 10.1007/BF02389140, Semigroup Forum 6 (1973), 330-333. (1973) Zbl0267.20059MR0390099DOI10.1007/BF02389140
  17. Shallon, C. R., Non-finitely based binary algebras derived from lattices, Ph.D. Thesis, University of California, Los Angeles (1979). (1979) MR2628364
  18. Tamura, T., 10.1007/978-94-009-3839-7_22, Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. (1987) Zbl0623.20044MR0900659DOI10.1007/978-94-009-3839-7_22
  19. Whitney, S., Théories linéaries, Ph.D. Thesis, Université Laval, Québec (1977). (1977) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.