Some globally determined classes of graphs
Ivica Bošnjak; Rozália Madarász
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 633-646
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBošnjak, Ivica, and Madarász, Rozália. "Some globally determined classes of graphs." Czechoslovak Mathematical Journal 68.3 (2018): 633-646. <http://eudml.org/doc/294645>.
@article{Bošnjak2018,
abstract = {For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.},
author = {Bošnjak, Ivica, Madarász, Rozália},
journal = {Czechoslovak Mathematical Journal},
keywords = {globals of graphs; global determination; isomorphism},
language = {eng},
number = {3},
pages = {633-646},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some globally determined classes of graphs},
url = {http://eudml.org/doc/294645},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Bošnjak, Ivica
AU - Madarász, Rozália
TI - Some globally determined classes of graphs
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 633
EP - 646
AB - For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
LA - eng
KW - globals of graphs; global determination; isomorphism
UR - http://eudml.org/doc/294645
ER -
References
top- Baker, K. A., McNulty, G. F., Werner, H., The finitely based varieties of graph algebras, Acta Sci. Math. 51 (1987), 3-15. (1987) Zbl0629.08003MR0911554
- Baumann, U., Pöschel, R., Schmeichel, I., Power graphs, J. Inf. Process. Cybern. 30 (1994), 135-142. (1994) Zbl0834.05042
- Bošnjak, I., Madarász, R., On power structures, Algebra Discrete Math. 2003 (2003), 14-35. (2003) Zbl1063.08001MR2048654
- Brink, C., 10.1007/BF01196091, Algebra Univers. 30 (1993), 177-216. (1993) Zbl0787.08001MR1223628DOI10.1007/BF01196091
- Diestel, R., 10.1007/978-3-662-53622-3, Graduate Texts in Mathematics 173 Springer, Berlin (2000). (2000) Zbl0945.05002MR1743598DOI10.1007/978-3-662-53622-3
- Drápal, A., Globals of unary algebras, Czech. Math. J. 35 (1985), 52-58. (1985) Zbl0579.08004MR0779335
- Goldblatt, R., 10.1016/0168-0072(89)90032-8, Ann. Pure Appl. Logic 44 (1989), 173-242. (1989) Zbl0722.08005MR1020344DOI10.1016/0168-0072(89)90032-8
- Gould, M., Iskra, J. A., Tsinakis, C., 10.1007/BF02573341, Semigroup Forum 29 (1984), 365-374. (1984) Zbl0553.20036MR0747778DOI10.1007/BF02573341
- Herchl, J., Jakubíková-Studenovská, D., 10.1007/s00500-007-0168-9, Soft Comput. 11 (2007), 1107-1112. (2007) Zbl1123.08001DOI10.1007/s00500-007-0168-9
- Kobayashi, Y., 10.1007/BF02573326, Semigroup Forum 29 (1984), 217-222. (1984) Zbl0537.20034MR0742134DOI10.1007/BF02573326
- Korczyński, W., 10.1515/dema-1997-0412, Demonstr. Math. 30 (1997), 809-828. (1997) Zbl0902.68077MR1617274DOI10.1515/dema-1997-0412
- Korczyński, W., 10.1515/dema-1998-0123, Demonstr. Math. 31 (1998), 179-192. (1998) Zbl0899.68063MR1623839DOI10.1515/dema-1998-0123
- Lovász, L., 10.1007/BF02029172, Period. Math. Hung. 1 (1971), 145-156. (1971) Zbl0223.08002MR0284391DOI10.1007/BF02029172
- Lukács, E., Globals of -algebras, Houston J. Math. 13 (1987), 241-244. (1987) Zbl0629.08002MR0904955
- McNulty, G. F., Shallon, C. R., 10.1007/BFb0063439, Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. (1983) Zbl0513.08003MR0716184DOI10.1007/BFb0063439
- Mogiljanskaja, E. M., 10.1007/BF02389140, Semigroup Forum 6 (1973), 330-333. (1973) Zbl0267.20059MR0390099DOI10.1007/BF02389140
- Shallon, C. R., Non-finitely based binary algebras derived from lattices, Ph.D. Thesis, University of California, Los Angeles (1979). (1979) MR2628364
- Tamura, T., 10.1007/978-94-009-3839-7_22, Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. (1987) Zbl0623.20044MR0900659DOI10.1007/978-94-009-3839-7_22
- Whitney, S., Théories linéaries, Ph.D. Thesis, Université Laval, Québec (1977). (1977)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.