On continuity of the entropy-based differently implicational algorithm
Kybernetika (2019)
- Volume: 55, Issue: 2, page 307-336
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTang, Yiming, and Pedrycz, Witold. "On continuity of the entropy-based differently implicational algorithm." Kybernetika 55.2 (2019): 307-336. <http://eudml.org/doc/294658>.
@article{Tang2019,
abstract = {Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical fuzzy inference examples are provided, and it is found that the entropy-based differently implicational algorithm can obtain more reasonable solution in contrast with the fuzzy entropy full implication algorithm. Finally, in the entropy-based differently implicational algorithm, we point out that the first fuzzy implication reflects the effect of rule base, and that the second fuzzy implication embodies the inference mechanism.},
author = {Tang, Yiming, Pedrycz, Witold},
journal = {Kybernetika},
keywords = {fuzzy inference; fuzzy entropy; compositional rule of inference; continuity},
language = {eng},
number = {2},
pages = {307-336},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On continuity of the entropy-based differently implicational algorithm},
url = {http://eudml.org/doc/294658},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Tang, Yiming
AU - Pedrycz, Witold
TI - On continuity of the entropy-based differently implicational algorithm
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 307
EP - 336
AB - Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical fuzzy inference examples are provided, and it is found that the entropy-based differently implicational algorithm can obtain more reasonable solution in contrast with the fuzzy entropy full implication algorithm. Finally, in the entropy-based differently implicational algorithm, we point out that the first fuzzy implication reflects the effect of rule base, and that the second fuzzy implication embodies the inference mechanism.
LA - eng
KW - fuzzy inference; fuzzy entropy; compositional rule of inference; continuity
UR - http://eudml.org/doc/294658
ER -
References
top- Baczyński, M., Jayaram, B., 10.1016/j.fss.2007.11.015, Fuzzy Set Syst. 159 (2008), 1836-1859. MR2428086DOI10.1016/j.fss.2007.11.015
- Baczyński, M., Jayaram, B., Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231., Springer, Berlin Heidelberg 2008. MR2428086
- Chaudhuria, B. B., Rosenfeldb, A., 10.1016/s0020-0255(99)00037-7, Inform. Sci. 118 (1999), 159-171. MR1723219DOI10.1016/s0020-0255(99)00037-7
- Dai, S. S., Pei, D. W., Wang, S. M., 10.1016/j.fss.2011.07.012, Fuzzy Set Syst. 189 (2012), 63-73. MR2871353DOI10.1016/j.fss.2011.07.012
- Dai, S. S., Pei, D. W., Guo, D. H., 10.1016/j.ijar.2012.11.007, Int. J. Approx. Reason. 54 (2013), 653-666. MR3041100DOI10.1016/j.ijar.2012.11.007
- Liu, F., Zhang, W. G., Fu, J. H., 10.1016/j.ins.2011.09.019, Inform. Sci. 185 (2012), 32-42. DOI10.1016/j.ins.2011.09.019
- Liu, F., Zhang, W. G., Wang, Z. X., 10.1016/j.ejor.2011.11.042, Eur. J. Oper. Res. 218 (2012), 747-754. MR2881747DOI10.1016/j.ejor.2011.11.042
- Fodor, J. C., 10.1016/0165-0114(94)00210-x, Fuzzy Set Syst. 69 (1995), 141-156. MR1317882DOI10.1016/0165-0114(94)00210-x
- Fodor, J., Roubens, M., 10.1007/978-94-017-1648-2, Kluwer Academic Publishers, Dordrecht, 1994. DOI10.1007/978-94-017-1648-2
- Gottwald, S., A Treatise on Many-Valued Logics., Research Studies, Studies in Logic and Computation 9, Baldock 2001. Zbl1048.03002MR1856623
- Guo, F. F., Chen, T. Y., Xia, Z. Q., Triple I methods for fuzzy reasoning based on maximum fuzzy entropy principle., Fuzzy Syst. Math. 17 (2003), 55-59. MR2026787
- Hong, D. H., Hwang, S. Y., 10.1016/0165-0114(94)90107-4, Fuzzy Set Syst. 66 (1994), 383-386. MR1300296DOI10.1016/0165-0114(94)90107-4
- Jayaram, B., 10.1109/tfuzz.2007.895969, IEEE Trans. Fuzzy Syst. 16 (2008), 130-144. DOI10.1109/tfuzz.2007.895969
- Jaynes, E. T., Where do we stand on maximum entropy?, In: The Maximum Entropy Formalism (R. .D. Levine and M. Tribus, eds.), MIT Press, Cambridge 1978, pp. 15-118. MR0521743
- Jaynes, E. T., 10.1109/proc.1982.12425, Proc. IEEE, 70 (1982), 939-952. DOI10.1109/proc.1982.12425
- Jenei, S., 10.1016/s0165-0114(97)00198-x, Fuzzy Set Syst. 104 (1999), 333-339. MR1688064DOI10.1016/s0165-0114(97)00198-x
- Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
- Li, H. X., 10.1007/s11432-006-0339-9, Sci. China Ser. F-Inf. Sci. 49 (2006), 339-363. MR2250341DOI10.1007/s11432-006-0339-9
- Li, H., Lee, E. S., 10.1016/s0898-1221(03)00147-0, Comput. Math. Appl. 45 (2003), 1683-1693. MR1993238DOI10.1016/s0898-1221(03)00147-0
- Luo, M. X., Liu, B., 10.1016/j.jlamp.2016.09.006, J. Log. Algebr. Methods 86 (2017), 298-307. MR3575372DOI10.1016/j.jlamp.2016.09.006
- Mas, M., Monserrat, M., Torrens, J., Trillas, E., 10.1109/tfuzz.2007.896304, IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. DOI10.1109/tfuzz.2007.896304
- Novák, V., Perfilieva, I., Močkoř, J., 10.1007/978-1-4615-5217-8, Kluwer Academic Publishes, Boston, Dordrecht 1999. Zbl0940.03028MR1733839DOI10.1007/978-1-4615-5217-8
- Pang, L. M., Tay, K. M., Lim, C. P., 10.1109/tfuzz.2016.2540059, IEEE Trans. Fuzzy Syst. 24 (2016), 1455-1463. DOI10.1109/tfuzz.2016.2540059
- Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems., CRC Press/Francis and Taylor, Boca Raton 2013.
- Pedrycz, W., 10.1201/9781315216737, Fuzzy Set Syst. 274 (2015), 12-17. MR3355341DOI10.1201/9781315216737
- Pedrycz, W., Wang, X. M., 10.1109/tfuzz.2015.2453393, IEEE Trans. Fuzzy Syst. 24 (2016), 489-496. DOI10.1109/tfuzz.2015.2453393
- Pei, D. W., 10.1016/s0165-0114(02)00053-2, Fuzzy Set Syst. 131 (2002), 297-302. MR1939842DOI10.1016/s0165-0114(02)00053-2
- Pei, D. W., 10.1016/j.ins.2007.09.003, Inform. Sci. 178 (2008), 520-530. MR2363234DOI10.1016/j.ins.2007.09.003
- Rosenfeld, A., 10.1016/0167-8655(85)90002-9, Pattern Recogn. Lett. 3 (1985), 229-233. DOI10.1016/0167-8655(85)90002-9
- Sarkoci, P., Šabo, M., Information boundedness principle in fuzzy inference process., Kybernetika 38 (2002), 327-338. MR1944313
- Szmidt, E., Kacprzyk, J., 10.1016/s0165-0114(98)00402-3, Fuzzy Set Syst. 118 (2001), 467-477. Zbl1045.94007MR1809394DOI10.1016/s0165-0114(98)00402-3
- Tang, Y. M., 10.1109/fuzz-ieee.2015.7337944, In: Proc. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, pp. 1-8. MR3324890DOI10.1109/fuzz-ieee.2015.7337944
- Tang, Y. M., Liu, X. P., 10.1016/j.camwa.2009.11.016, Comput. Math. Appl. 59 (2010), 1965-1984. MR2595972DOI10.1016/j.camwa.2009.11.016
- Tang, Y. M., Ren, F. J., 10.1109/fskd.2013.6816179, Iran. J. Fuzzy Syst. 10 (2013), 1-24. MR3154637DOI10.1109/fskd.2013.6816179
- Tang, Y. M., Ren, F. J., 10.3233/IFS-141476, J. Intell. Fuzzy Syst. 28 (2015), 1885-1897. MR3324890DOI10.3233/IFS-141476
- Tang, Y. M., Ren, F. J., 10.1142/s0219622014500746, Int. J. Inf. Tech. Decis. 16 (2017), 443-471. DOI10.1142/s0219622014500746
- Tang, Y. M., Ren, F. J., Chen, Y. X., 10.1109/jsee.2012.00070, J. Syst. Eng. Electron. 23 (2012), 560-573. DOI10.1109/jsee.2012.00070
- Tang, Y. M., Yang, X. Z., 10.1016/j.ijar.2013.04.012, Int. J. Approx. Reason. 54 (2013), 1034-1048. MR3081298DOI10.1016/j.ijar.2013.04.012
- Tang, Y. M., Yang, X. Z., Yue, F., 10.1109/fskd.2013.6816179, In: Proc. the 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), pp. 125-129. DOI10.1109/fskd.2013.6816179
- Wang, L. X., A Course in Fuzzy Systems and Control., Prentice-Hall, Englewood Cliffs, NJ, 1997.
- Wang, G. J., 10.1016/s0020-0255(98)10103-2, Inform. Sci. 117 (1999), 47-88. MR1705095DOI10.1016/s0020-0255(98)10103-2
- Wang, G. J., Fu, L., 10.1016/j.camwa.2004.01.019, Comput. Math. Appl. 49 (2005), 923-932. MR2135223DOI10.1016/j.camwa.2004.01.019
- Wang, G. J., Zhou, H. J., Introduction to Mathematical Logic and Resolution Principle., Co-published by Science Press and Alpha International Science Ltd., 2009.
- Yang, X. Y., Yu, F. S., Pedrycz, W., 10.1016/j.ijar.2016.10.010, Int. J. Approx. Reasoning 81 (2017), 1-27. MR3589730DOI10.1016/j.ijar.2016.10.010
- Zadeh, L. A., 10.1109/tsmc.1973.5408575, IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44. MR0309582DOI10.1109/tsmc.1973.5408575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.