Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods

Mohsen Mehrali-Varjani; Mostafa Shamsi; Alaeddin Malek

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 629-647
  • ISSN: 0023-5954

Abstract

top
This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.

How to cite

top

Mehrali-Varjani, Mohsen, Shamsi, Mostafa, and Malek, Alaeddin. "Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods." Kybernetika 54.4 (2018): 629-647. <http://eudml.org/doc/294663>.

@article{Mehrali2018,
abstract = {This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.},
author = {Mehrali-Varjani, Mohsen, Shamsi, Mostafa, Malek, Alaeddin},
journal = {Kybernetika},
keywords = {nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation},
language = {eng},
number = {4},
pages = {629-647},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods},
url = {http://eudml.org/doc/294663},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Mehrali-Varjani, Mohsen
AU - Shamsi, Mostafa
AU - Malek, Alaeddin
TI - Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 629
EP - 647
AB - This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.
LA - eng
KW - nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation
UR - http://eudml.org/doc/294663
ER -

References

top
  1. Baltensperger, R., Trummer, M. R., 10.1137/s1064827501388182, SIAM J. Sci. Comput. 24 (2003), 1465-1487. MR1976305DOI10.1137/s1064827501388182
  2. Beard, R., Saridis, G., Wen, J., 10.1016/s0005-1098(97)00128-3, Automatica 33 (1997), 2159-2177. MR1604089DOI10.1016/s0005-1098(97)00128-3
  3. Ben-Asher, J. Z., 10.2514/4.867347, American Institute of Aeronautics and Astronautics, Reston 2010. DOI10.2514/4.867347
  4. Boyd, J. P., Chebyshev and Fourier Spectral Methods. Second revised edition., Dover Publications, New York 2001. MR1874071
  5. Boyd, J. P., Petschek, R., 10.1007/s10915-013-9751-7, J. Scientific Comput. 59 (2014), 1-27. MR3167725DOI10.1007/s10915-013-9751-7
  6. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., 10.1007/978-3-642-84108-8, Springer-Verlag, Berlin 1987. MR2340254DOI10.1007/978-3-642-84108-8
  7. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., Spectral Methods: Fundamentals in Single Domains., Springer-Verlag, Berlin 2006. MR2223552
  8. Cristiani, E., Martinon, P., 10.1007/s10957-010-9649-6, J. Optim. Theory Appl. 146 (2010), 321-346. MR2679665DOI10.1007/s10957-010-9649-6
  9. Dai, R., Jr, J. Cochran, 10.1007/s10957-009-9565-9, J. Optim. Theory Appl. 143 (2009), 265–278. MR2545952DOI10.1007/s10957-009-9565-9
  10. Elnagar, G., Kazemi, M. A., Razzaghi, M., 10.1109/9.467672, IEEE Trans. Automat. Control 40 (1995), 1793-1796. MR1354521DOI10.1109/9.467672
  11. Fahroo, F., Ross, I. M., 10.2514/2.4862, J. Guid. Control Dynam. 25 (2002), 160-166. DOI10.2514/2.4862
  12. Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M., 10.1002/mma.4097, Math. Methods Appl. Sci. 40 (2017), 1783-1793. MR3622433DOI10.1002/mma.4097
  13. Funaro, D., 10.1007/978-3-540-46783-0, Springer-Verlag, Berlin 1992. MR1176949DOI10.1007/978-3-540-46783-0
  14. Hanert, E., Piret, C., 10.1137/130927292, SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. MR3246904DOI10.1137/130927292
  15. Huang, J., Lin, C. F., 10.2514/3.21495, J. Guid. Control Dynam. 18 (1995), 989-994. DOI10.2514/3.21495
  16. Huang, C. S., Wang, S., Chen, C. S., Li, Z. C., 10.1016/j.automatica.2006.07.013, Automatica 42 (2006), 2201-2207. MR2259164DOI10.1016/j.automatica.2006.07.013
  17. Kang, W., Bedrossian, N., Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours., SIAM News 40 (2007). 
  18. Kang, W., Gong, Q., Ross, I. M., Fahroo, F., 10.1002/rnc.1166, Int. J. Robust Nonlin. 17 (2007), 1251-1277. MR2354643DOI10.1002/rnc.1166
  19. Kirk, D. E., Optimal Control Therory: An Introduction., Prentice-Hall, New Jersey 1970. 
  20. Kleinman, D., 10.1109/tac.1968.1098829, IEEE Trans. Automat. Control 13 (1968), 114-115. DOI10.1109/tac.1968.1098829
  21. Lancaster, P., Rodman, L., Algebraic Riccati Equations., Clarendon, Wotton-under-Edge 1995. MR1367089
  22. Lewis, F. L., Syrmos, V. L., Optimal Control., John Wiley, New York 1995. MR0833285
  23. Liberzon, D., Calculus of Variations and Optimal Control Theory., Princeton University Press 2012. MR2895149
  24. Nagy, Z. K., Braatz, R D., 10.1016/j.jprocont.2003.07.004, J. Process Control. 14 (2004), 411-422. DOI10.1016/j.jprocont.2003.07.004
  25. Nik, H. S., Shateyi, S., 10.1155/2013/914741, Math. Probl. Eng. 2013 (2013), 1-10. MR3043723DOI10.1155/2013/914741
  26. Orszag, S. A., 10.1002/sapm1972513253, Stud. Appl. Math. 51 (1972), 253-259. DOI10.1002/sapm1972513253
  27. Parand, K., Rezaei, A. R., Ghaderi, S. M., 10.1016/j.cnsns.2010.03.022, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. MR2679180DOI10.1016/j.cnsns.2010.03.022
  28. Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian, Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation., J. Vib. Control 1 (2016), 1-16. MR3785617
  29. Reisinger, C., Forsyth, P. A., 10.1016/j.apnum.2016.01.001, Appl. Numer. Math. 103 (2016), 27-47. MR3458022DOI10.1016/j.apnum.2016.01.001
  30. Ross, I. M., Fahroo, F., 10.2514/1.3426, J. Guid. Control Dynam. 27 (2004), 397-405. DOI10.2514/1.3426
  31. Sabeh, Z., Shamsi, M., Dehghan, M., Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach. 
  32. Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H., 10.1016/j.apm.2012.09.062, Appl. Math. Model. 37 (2013), 4634-4642. MR3020599DOI10.1016/j.apm.2012.09.062
  33. Schafer, R. D., An Introduction to Nonassociative Algebras., Stillwater, Oklahoma 1969. 
  34. Shamsi, M., 10.1002/oca.967, Optimal Control Appl. Methods 32 (2010), 668-680. MR2871837DOI10.1002/oca.967
  35. Shamsi, M., Dehghan, M., 10.1002/num.20608, Numer. Methods Partial Differential Equations 28 (2012), 74-93. MR2864659DOI10.1002/num.20608
  36. Swaidan, W., Hussin, A., 10.1155/2013/240352, Abs. Appl. Anal. 2013 (2013), 1-8. MR3093751DOI10.1155/2013/240352
  37. Trefethen, L. N., 10.1137/1.9780898719598, SIAM, Philadelphia 2000. MR1776072DOI10.1137/1.9780898719598
  38. Vlassenbroeck, J., Doreen, R. Van, 10.1109/9.192187, IEEE Trans. Automat. Control 33 (1988), 333-340. MR0931197DOI10.1109/9.192187
  39. Wang, S., Gao, F., Teo, K. L., 10.1093/imamci/17.2.167, IMA J. Math. Control I. 17 (2000), 167-178. MR1769274DOI10.1093/imamci/17.2.167
  40. Yan, Zh., Wang, J., 10.1109/tii.2012.2205582, IEEE Trans. Ind. Informat. 8 (2012), 746-756. DOI10.1109/tii.2012.2205582
  41. Yershov, D. S., Frazzoli, E., 10.1177/0278364915602958, Int. J. Robot. Res. 35 (2016), 565-584. DOI10.1177/0278364915602958
  42. Yong, J., Zhou, X. Y., Stochastic Controls: Hamiltonian Systems and HJB Equations., Springer-Verlag, New York 1999. MR1696772

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.