Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods
Mohsen Mehrali-Varjani; Mostafa Shamsi; Alaeddin Malek
Kybernetika (2018)
- Volume: 54, Issue: 4, page 629-647
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMehrali-Varjani, Mohsen, Shamsi, Mostafa, and Malek, Alaeddin. "Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods." Kybernetika 54.4 (2018): 629-647. <http://eudml.org/doc/294663>.
@article{Mehrali2018,
abstract = {This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.},
author = {Mehrali-Varjani, Mohsen, Shamsi, Mostafa, Malek, Alaeddin},
journal = {Kybernetika},
keywords = {nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation},
language = {eng},
number = {4},
pages = {629-647},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods},
url = {http://eudml.org/doc/294663},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Mehrali-Varjani, Mohsen
AU - Shamsi, Mostafa
AU - Malek, Alaeddin
TI - Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 629
EP - 647
AB - This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.
LA - eng
KW - nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation
UR - http://eudml.org/doc/294663
ER -
References
top- Baltensperger, R., Trummer, M. R., 10.1137/s1064827501388182, SIAM J. Sci. Comput. 24 (2003), 1465-1487. MR1976305DOI10.1137/s1064827501388182
- Beard, R., Saridis, G., Wen, J., 10.1016/s0005-1098(97)00128-3, Automatica 33 (1997), 2159-2177. MR1604089DOI10.1016/s0005-1098(97)00128-3
- Ben-Asher, J. Z., 10.2514/4.867347, American Institute of Aeronautics and Astronautics, Reston 2010. DOI10.2514/4.867347
- Boyd, J. P., Chebyshev and Fourier Spectral Methods. Second revised edition., Dover Publications, New York 2001. MR1874071
- Boyd, J. P., Petschek, R., 10.1007/s10915-013-9751-7, J. Scientific Comput. 59 (2014), 1-27. MR3167725DOI10.1007/s10915-013-9751-7
- Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., 10.1007/978-3-642-84108-8, Springer-Verlag, Berlin 1987. MR2340254DOI10.1007/978-3-642-84108-8
- Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., Spectral Methods: Fundamentals in Single Domains., Springer-Verlag, Berlin 2006. MR2223552
- Cristiani, E., Martinon, P., 10.1007/s10957-010-9649-6, J. Optim. Theory Appl. 146 (2010), 321-346. MR2679665DOI10.1007/s10957-010-9649-6
- Dai, R., Jr, J. Cochran, 10.1007/s10957-009-9565-9, J. Optim. Theory Appl. 143 (2009), 265–278. MR2545952DOI10.1007/s10957-009-9565-9
- Elnagar, G., Kazemi, M. A., Razzaghi, M., 10.1109/9.467672, IEEE Trans. Automat. Control 40 (1995), 1793-1796. MR1354521DOI10.1109/9.467672
- Fahroo, F., Ross, I. M., 10.2514/2.4862, J. Guid. Control Dynam. 25 (2002), 160-166. DOI10.2514/2.4862
- Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M., 10.1002/mma.4097, Math. Methods Appl. Sci. 40 (2017), 1783-1793. MR3622433DOI10.1002/mma.4097
- Funaro, D., 10.1007/978-3-540-46783-0, Springer-Verlag, Berlin 1992. MR1176949DOI10.1007/978-3-540-46783-0
- Hanert, E., Piret, C., 10.1137/130927292, SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. MR3246904DOI10.1137/130927292
- Huang, J., Lin, C. F., 10.2514/3.21495, J. Guid. Control Dynam. 18 (1995), 989-994. DOI10.2514/3.21495
- Huang, C. S., Wang, S., Chen, C. S., Li, Z. C., 10.1016/j.automatica.2006.07.013, Automatica 42 (2006), 2201-2207. MR2259164DOI10.1016/j.automatica.2006.07.013
- Kang, W., Bedrossian, N., Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours., SIAM News 40 (2007).
- Kang, W., Gong, Q., Ross, I. M., Fahroo, F., 10.1002/rnc.1166, Int. J. Robust Nonlin. 17 (2007), 1251-1277. MR2354643DOI10.1002/rnc.1166
- Kirk, D. E., Optimal Control Therory: An Introduction., Prentice-Hall, New Jersey 1970.
- Kleinman, D., 10.1109/tac.1968.1098829, IEEE Trans. Automat. Control 13 (1968), 114-115. DOI10.1109/tac.1968.1098829
- Lancaster, P., Rodman, L., Algebraic Riccati Equations., Clarendon, Wotton-under-Edge 1995. MR1367089
- Lewis, F. L., Syrmos, V. L., Optimal Control., John Wiley, New York 1995. MR0833285
- Liberzon, D., Calculus of Variations and Optimal Control Theory., Princeton University Press 2012. MR2895149
- Nagy, Z. K., Braatz, R D., 10.1016/j.jprocont.2003.07.004, J. Process Control. 14 (2004), 411-422. DOI10.1016/j.jprocont.2003.07.004
- Nik, H. S., Shateyi, S., 10.1155/2013/914741, Math. Probl. Eng. 2013 (2013), 1-10. MR3043723DOI10.1155/2013/914741
- Orszag, S. A., 10.1002/sapm1972513253, Stud. Appl. Math. 51 (1972), 253-259. DOI10.1002/sapm1972513253
- Parand, K., Rezaei, A. R., Ghaderi, S. M., 10.1016/j.cnsns.2010.03.022, Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. MR2679180DOI10.1016/j.cnsns.2010.03.022
- Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian, Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation., J. Vib. Control 1 (2016), 1-16. MR3785617
- Reisinger, C., Forsyth, P. A., 10.1016/j.apnum.2016.01.001, Appl. Numer. Math. 103 (2016), 27-47. MR3458022DOI10.1016/j.apnum.2016.01.001
- Ross, I. M., Fahroo, F., 10.2514/1.3426, J. Guid. Control Dynam. 27 (2004), 397-405. DOI10.2514/1.3426
- Sabeh, Z., Shamsi, M., Dehghan, M., Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach.
- Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H., 10.1016/j.apm.2012.09.062, Appl. Math. Model. 37 (2013), 4634-4642. MR3020599DOI10.1016/j.apm.2012.09.062
- Schafer, R. D., An Introduction to Nonassociative Algebras., Stillwater, Oklahoma 1969.
- Shamsi, M., 10.1002/oca.967, Optimal Control Appl. Methods 32 (2010), 668-680. MR2871837DOI10.1002/oca.967
- Shamsi, M., Dehghan, M., 10.1002/num.20608, Numer. Methods Partial Differential Equations 28 (2012), 74-93. MR2864659DOI10.1002/num.20608
- Swaidan, W., Hussin, A., 10.1155/2013/240352, Abs. Appl. Anal. 2013 (2013), 1-8. MR3093751DOI10.1155/2013/240352
- Trefethen, L. N., 10.1137/1.9780898719598, SIAM, Philadelphia 2000. MR1776072DOI10.1137/1.9780898719598
- Vlassenbroeck, J., Doreen, R. Van, 10.1109/9.192187, IEEE Trans. Automat. Control 33 (1988), 333-340. MR0931197DOI10.1109/9.192187
- Wang, S., Gao, F., Teo, K. L., 10.1093/imamci/17.2.167, IMA J. Math. Control I. 17 (2000), 167-178. MR1769274DOI10.1093/imamci/17.2.167
- Yan, Zh., Wang, J., 10.1109/tii.2012.2205582, IEEE Trans. Ind. Informat. 8 (2012), 746-756. DOI10.1109/tii.2012.2205582
- Yershov, D. S., Frazzoli, E., 10.1177/0278364915602958, Int. J. Robot. Res. 35 (2016), 565-584. DOI10.1177/0278364915602958
- Yong, J., Zhou, X. Y., Stochastic Controls: Hamiltonian Systems and HJB Equations., Springer-Verlag, New York 1999. MR1696772
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.