Strong measure zero and meager-additive sets through the prism of fractal measures

Ondřej Zindulka

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 1, page 131-155
  • ISSN: 0010-2628

Abstract

top
We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of 2 ω is meager-additive if and only if it is -additive; if f : 2 ω 2 ω is continuous and X is meager-additive, then so is f ( X ) .

How to cite

top

Zindulka, Ondřej. "Strong measure zero and meager-additive sets through the prism of fractal measures." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 131-155. <http://eudml.org/doc/294665>.

@article{Zindulka2019,
abstract = {We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^\{\omega \}$ is meager-additive if and only if it is $\mathcal \{E\}$-additive; if $f\colon 2^\{\omega \}\rightarrow 2^\{\omega \}$ is continuous and $X$ is meager-additive, then so is $f(X)$.},
author = {Zindulka, Ondřej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {meager-additive; $\mathcal \{E\}$-additive; strong measure zero; sharp measure zero; Hausdorff dimension; Hausdorff measure},
language = {eng},
number = {1},
pages = {131-155},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strong measure zero and meager-additive sets through the prism of fractal measures},
url = {http://eudml.org/doc/294665},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Zindulka, Ondřej
TI - Strong measure zero and meager-additive sets through the prism of fractal measures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 131
EP - 155
AB - We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^{\omega }$ is meager-additive if and only if it is $\mathcal {E}$-additive; if $f\colon 2^{\omega }\rightarrow 2^{\omega }$ is continuous and $X$ is meager-additive, then so is $f(X)$.
LA - eng
KW - meager-additive; $\mathcal {E}$-additive; strong measure zero; sharp measure zero; Hausdorff dimension; Hausdorff measure
UR - http://eudml.org/doc/294665
ER -

References

top
  1. Bartoszyński T., Judah H., Set Theory, On the structure of the real line. A K Peters, Wellesley, 1995. MR1350295
  2. Bartoszyński T., Shelah S., 10.1016/0168-0072(92)90001-G, Ann. Pure Appl. Logic 58 (1992), no. 2, 93–110. MR1186905DOI10.1016/0168-0072(92)90001-G
  3. Besicovitch A. S., 10.1007/BF02393607, Acta Math. 62 (1933), no. 1, 289–300. MR1555386DOI10.1007/BF02393607
  4. Besicovitch A. S., 10.1007/BF02393610, Acta Math. 62 (1933), no. 1, 317–318. MR1555389DOI10.1007/BF02393610
  5. Borel E., 10.24033/bsmf.996, Bull. Soc. Math. France 47 (1919), 97–125 (French). MR1504785DOI10.24033/bsmf.996
  6. Carlson T. J., 10.1090/S0002-9939-1993-1139474-6, Proc. Amer. Math. Soc. 118 (1993), no. 2, 577–586. MR1139474DOI10.1090/S0002-9939-1993-1139474-6
  7. Corazza P., 10.1090/S0002-9947-1989-0982239-X, Trans. Amer. Math. Soc. 316 (1989), no. 1, 115–140. MR0982239DOI10.1090/S0002-9947-1989-0982239-X
  8. Federer H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969. Zbl0874.49001MR0257325
  9. Fremlin D. H., Measure Theory. Vol. 5, Set-theoretic Measure Theory, Part I, Torres Fremlin, Colchester, 2015. MR3723041
  10. Galvin F., Miller A. W., 10.1016/0166-8641(84)90038-5, -sets and other singular sets of real numbers}, Topology Appl. 17 (1984), no. 2, 145–155. MR0738943DOI10.1016/0166-8641(84)90038-5
  11. Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Abstract 79T–E25, Not. Am. Math. Soc. 26 (1979), A-280. 
  12. Galvin F., Mycielski J., Solovay R. M., 10.1007/s00153-017-0541-z, Arch. Math. Logic 56 (2017), no. 7–8, 725–732. MR3696064DOI10.1007/s00153-017-0541-z
  13. Gerlits J., Nagy Z., 10.1016/0166-8641(82)90065-7, I}, Topology Appl. 14 (1982), no. 2, 151–161. MR0667661DOI10.1016/0166-8641(82)90065-7
  14. Gödel K., 10.1073/pnas.24.12.556, Proc. Natl. Acad. Sci. USA 24 (1938), no. 12, 556–557. DOI10.1073/pnas.24.12.556
  15. Gödel K., The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, 3, Princeton University Press, Princeton, 1940. MR0002514
  16. Howroyd J. D., On the Theory of Hausdorff Measures in Metric Spaces, Ph.D. Thesis, University College, London, 1994. MR1365084
  17. Howroyd J. D., 10.1017/S0305004100074545, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715–727. MR1362951DOI10.1017/S0305004100074545
  18. Hrušák M., Wohofsky W., Zindulka O., 10.1007/s00153-015-0459-2, Arch. Math. Logic 55 (2016), no. 1–2, 105–131. MR3453581DOI10.1007/s00153-015-0459-2
  19. Hrušák M., Zapletal J., 10.1215/ijm/1506067289, Illinois J. Math. 60 (2016), no. 3–4, 751–760. MR3707641DOI10.1215/ijm/1506067289
  20. Kelly J. D., A method for constructing measures appropriate for the study of Cartesian products, Proc. London Math. Soc. (3) 26 (1973), 521–546. MR0318427
  21. Kysiak M., On Erdős-Sierpiński Duality between Lebesgue Measure and Baire Category, Master's Thesis, Uniwersytet Warszawski, Warszawa, 2000 (Polish). 
  22. Laver R., 10.1007/BF02392416, Acta Math. 137 (1976), no. 3–4, 151–169. Zbl0357.28003MR0422027DOI10.1007/BF02392416
  23. Munroe M. E., Introduction to Measure and Integration, Addison-Wesley Publishing Company, Cambridge, 1953. MR0053186
  24. Nowik A., Scheepers M., Weiss T., 10.2307/2586602, J. Symbolic Logic 63 (1998), no. 1, 301–324. Zbl0901.03036MR1610427DOI10.2307/2586602
  25. Nowik A., Weiss T., 10.2178/jsl/1190150097, J. Symbolic Logic 67 (2002), no. 2, 547–556. MR1905154DOI10.2178/jsl/1190150097
  26. Pawlikowski J., 10.1007/BF02761100, Israel J. Math. 93 (1996), 171–183. Zbl0857.28001MR1380640DOI10.1007/BF02761100
  27. Rogers C. A., Hausdorff Measures, Cambridge University Press, London, 1970. MR0281862
  28. Scheepers M., 10.2307/2586631, J. Symbolic Logic 64 (1999), no. 3, 1295–1306. MR1779763DOI10.2307/2586631
  29. Shelah S., 10.1007/BF02808209, Israel J. Math. 89 (1995), no. 1–3, 357–376. MR1324470DOI10.1007/BF02808209
  30. Sierpiński W., 10.4064/fm-11-1-302-303, Fundamenta Mathematicae 11 (1928), no. 1, 302–304 (French). DOI10.4064/fm-11-1-302-303
  31. Tsaban B., Weiss T., 10.14321/realanalexch.30.2.0819, Real Anal. Exchange 30 (2004/05), no. 2, 819–835. MR2177439DOI10.14321/realanalexch.30.2.0819
  32. Weiss T., On meager additive and null additive sets in the Cantor space 2 ω and in , Bull. Pol. Acad. Sci. Math. 57 (2009), no. 2, 91–99. MR2545840
  33. Weiss T., 10.4064/ba57-2-1, Bull. Pol. Acad. Sci. Math. 62 (2014), no. 1, 1–9. MR3241126DOI10.4064/ba57-2-1
  34. Weiss T., 10.4064/ba8098-8-2017, Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 107–111. MR3731016DOI10.4064/ba8098-8-2017
  35. Weiss T., Tsaban B., Topological diagonalizations and Hausdorff dimension, Note Mat. 22 (2003/04), no. 2, 83–92. MR2112732
  36. Wohofsky W., Special Sets of Real Numbers and Variants of the Borel Conjecture, Ph.D. Thesis, Technische Universität Wien, Wien, 2013. 
  37. Zakrzewski P., 10.1090/S0002-9939-00-05726-9, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1793–1798. MR1814112DOI10.1090/S0002-9939-00-05726-9
  38. Zakrzewski P., 10.1016/j.topol.2008.05.005, Topology Appl. 155 (2008), no. 13, 1445–1449. MR2427418DOI10.1016/j.topol.2008.05.005
  39. Zindulka O., 10.4064/fm218-2-1, Fund. Math. 218 (2012), no. 2, 95–119. MR2957686DOI10.4064/fm218-2-1
  40. Zindulka O., 10.5565/PUBLMAT_57213_06, Publ. Mat. 57 (2013), no. 2, 393–420. MR3114775DOI10.5565/PUBLMAT_57213_06

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.