Strong measure zero and meager-additive sets through the prism of fractal measures
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 1, page 131-155
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZindulka, Ondřej. "Strong measure zero and meager-additive sets through the prism of fractal measures." Commentationes Mathematicae Universitatis Carolinae 60.1 (2019): 131-155. <http://eudml.org/doc/294665>.
@article{Zindulka2019,
abstract = {We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^\{\omega \}$ is meager-additive if and only if it is $\mathcal \{E\}$-additive; if $f\colon 2^\{\omega \}\rightarrow 2^\{\omega \}$ is continuous and $X$ is meager-additive, then so is $f(X)$.},
author = {Zindulka, Ondřej},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {meager-additive; $\mathcal \{E\}$-additive; strong measure zero; sharp measure zero; Hausdorff dimension; Hausdorff measure},
language = {eng},
number = {1},
pages = {131-155},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strong measure zero and meager-additive sets through the prism of fractal measures},
url = {http://eudml.org/doc/294665},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Zindulka, Ondřej
TI - Strong measure zero and meager-additive sets through the prism of fractal measures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 1
SP - 131
EP - 155
AB - We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin–Mycielski–Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^{\omega }$ is meager-additive if and only if it is $\mathcal {E}$-additive; if $f\colon 2^{\omega }\rightarrow 2^{\omega }$ is continuous and $X$ is meager-additive, then so is $f(X)$.
LA - eng
KW - meager-additive; $\mathcal {E}$-additive; strong measure zero; sharp measure zero; Hausdorff dimension; Hausdorff measure
UR - http://eudml.org/doc/294665
ER -
References
top- Bartoszyński T., Judah H., Set Theory, On the structure of the real line. A K Peters, Wellesley, 1995. MR1350295
- Bartoszyński T., Shelah S., 10.1016/0168-0072(92)90001-G, Ann. Pure Appl. Logic 58 (1992), no. 2, 93–110. MR1186905DOI10.1016/0168-0072(92)90001-G
- Besicovitch A. S., 10.1007/BF02393607, Acta Math. 62 (1933), no. 1, 289–300. MR1555386DOI10.1007/BF02393607
- Besicovitch A. S., 10.1007/BF02393610, Acta Math. 62 (1933), no. 1, 317–318. MR1555389DOI10.1007/BF02393610
- Borel E., 10.24033/bsmf.996, Bull. Soc. Math. France 47 (1919), 97–125 (French). MR1504785DOI10.24033/bsmf.996
- Carlson T. J., 10.1090/S0002-9939-1993-1139474-6, Proc. Amer. Math. Soc. 118 (1993), no. 2, 577–586. MR1139474DOI10.1090/S0002-9939-1993-1139474-6
- Corazza P., 10.1090/S0002-9947-1989-0982239-X, Trans. Amer. Math. Soc. 316 (1989), no. 1, 115–140. MR0982239DOI10.1090/S0002-9947-1989-0982239-X
- Federer H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969. Zbl0874.49001MR0257325
- Fremlin D. H., Measure Theory. Vol. 5, Set-theoretic Measure Theory, Part I, Torres Fremlin, Colchester, 2015. MR3723041
- Galvin F., Miller A. W., 10.1016/0166-8641(84)90038-5, -sets and other singular sets of real numbers}, Topology Appl. 17 (1984), no. 2, 145–155. MR0738943DOI10.1016/0166-8641(84)90038-5
- Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Abstract 79T–E25, Not. Am. Math. Soc. 26 (1979), A-280.
- Galvin F., Mycielski J., Solovay R. M., 10.1007/s00153-017-0541-z, Arch. Math. Logic 56 (2017), no. 7–8, 725–732. MR3696064DOI10.1007/s00153-017-0541-z
- Gerlits J., Nagy Z., 10.1016/0166-8641(82)90065-7, I}, Topology Appl. 14 (1982), no. 2, 151–161. MR0667661DOI10.1016/0166-8641(82)90065-7
- Gödel K., 10.1073/pnas.24.12.556, Proc. Natl. Acad. Sci. USA 24 (1938), no. 12, 556–557. DOI10.1073/pnas.24.12.556
- Gödel K., The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, 3, Princeton University Press, Princeton, 1940. MR0002514
- Howroyd J. D., On the Theory of Hausdorff Measures in Metric Spaces, Ph.D. Thesis, University College, London, 1994. MR1365084
- Howroyd J. D., 10.1017/S0305004100074545, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715–727. MR1362951DOI10.1017/S0305004100074545
- Hrušák M., Wohofsky W., Zindulka O., 10.1007/s00153-015-0459-2, Arch. Math. Logic 55 (2016), no. 1–2, 105–131. MR3453581DOI10.1007/s00153-015-0459-2
- Hrušák M., Zapletal J., 10.1215/ijm/1506067289, Illinois J. Math. 60 (2016), no. 3–4, 751–760. MR3707641DOI10.1215/ijm/1506067289
- Kelly J. D., A method for constructing measures appropriate for the study of Cartesian products, Proc. London Math. Soc. (3) 26 (1973), 521–546. MR0318427
- Kysiak M., On Erdős-Sierpiński Duality between Lebesgue Measure and Baire Category, Master's Thesis, Uniwersytet Warszawski, Warszawa, 2000 (Polish).
- Laver R., 10.1007/BF02392416, Acta Math. 137 (1976), no. 3–4, 151–169. Zbl0357.28003MR0422027DOI10.1007/BF02392416
- Munroe M. E., Introduction to Measure and Integration, Addison-Wesley Publishing Company, Cambridge, 1953. MR0053186
- Nowik A., Scheepers M., Weiss T., 10.2307/2586602, J. Symbolic Logic 63 (1998), no. 1, 301–324. Zbl0901.03036MR1610427DOI10.2307/2586602
- Nowik A., Weiss T., 10.2178/jsl/1190150097, J. Symbolic Logic 67 (2002), no. 2, 547–556. MR1905154DOI10.2178/jsl/1190150097
- Pawlikowski J., 10.1007/BF02761100, Israel J. Math. 93 (1996), 171–183. Zbl0857.28001MR1380640DOI10.1007/BF02761100
- Rogers C. A., Hausdorff Measures, Cambridge University Press, London, 1970. MR0281862
- Scheepers M., 10.2307/2586631, J. Symbolic Logic 64 (1999), no. 3, 1295–1306. MR1779763DOI10.2307/2586631
- Shelah S., 10.1007/BF02808209, Israel J. Math. 89 (1995), no. 1–3, 357–376. MR1324470DOI10.1007/BF02808209
- Sierpiński W., 10.4064/fm-11-1-302-303, Fundamenta Mathematicae 11 (1928), no. 1, 302–304 (French). DOI10.4064/fm-11-1-302-303
- Tsaban B., Weiss T., 10.14321/realanalexch.30.2.0819, Real Anal. Exchange 30 (2004/05), no. 2, 819–835. MR2177439DOI10.14321/realanalexch.30.2.0819
- Weiss T., On meager additive and null additive sets in the Cantor space and in , Bull. Pol. Acad. Sci. Math. 57 (2009), no. 2, 91–99. MR2545840
- Weiss T., 10.4064/ba57-2-1, Bull. Pol. Acad. Sci. Math. 62 (2014), no. 1, 1–9. MR3241126DOI10.4064/ba57-2-1
- Weiss T., 10.4064/ba8098-8-2017, Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 107–111. MR3731016DOI10.4064/ba8098-8-2017
- Weiss T., Tsaban B., Topological diagonalizations and Hausdorff dimension, Note Mat. 22 (2003/04), no. 2, 83–92. MR2112732
- Wohofsky W., Special Sets of Real Numbers and Variants of the Borel Conjecture, Ph.D. Thesis, Technische Universität Wien, Wien, 2013.
- Zakrzewski P., 10.1090/S0002-9939-00-05726-9, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1793–1798. MR1814112DOI10.1090/S0002-9939-00-05726-9
- Zakrzewski P., 10.1016/j.topol.2008.05.005, Topology Appl. 155 (2008), no. 13, 1445–1449. MR2427418DOI10.1016/j.topol.2008.05.005
- Zindulka O., 10.4064/fm218-2-1, Fund. Math. 218 (2012), no. 2, 95–119. MR2957686DOI10.4064/fm218-2-1
- Zindulka O., 10.5565/PUBLMAT_57213_06, Publ. Mat. 57 (2013), no. 2, 393–420. MR3114775DOI10.5565/PUBLMAT_57213_06
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.