Mathematical and numerical analysis of radiative heat transfer in semi-transparent media
Yao-Chuang Han; Yu-Feng Nie; Zhan-Bin Yuan
Applications of Mathematics (2019)
- Volume: 64, Issue: 1, page 75-100
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHan, Yao-Chuang, Nie, Yu-Feng, and Yuan, Zhan-Bin. "Mathematical and numerical analysis of radiative heat transfer in semi-transparent media." Applications of Mathematics 64.1 (2019): 75-100. <http://eudml.org/doc/294670>.
@article{Han2019,
abstract = {This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.},
author = {Han, Yao-Chuang, Nie, Yu-Feng, Yuan, Zhan-Bin},
journal = {Applications of Mathematics},
keywords = {radiative heat transfer; existence and uniqueness; collocation-boundary element method; shadow detection; iterative nonlinear solver},
language = {eng},
number = {1},
pages = {75-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical and numerical analysis of radiative heat transfer in semi-transparent media},
url = {http://eudml.org/doc/294670},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Han, Yao-Chuang
AU - Nie, Yu-Feng
AU - Yuan, Zhan-Bin
TI - Mathematical and numerical analysis of radiative heat transfer in semi-transparent media
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 75
EP - 100
AB - This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.
LA - eng
KW - radiative heat transfer; existence and uniqueness; collocation-boundary element method; shadow detection; iterative nonlinear solver
UR - http://eudml.org/doc/294670
ER -
References
top- Adams, M. L., Larsen, E. W., 10.1016/S0149-1970(01)00023-3, Progr. Nucl. Energy 40 (2002), 3-159. (2002) DOI10.1016/S0149-1970(01)00023-3
- Agoshkov, V., 10.1007/978-1-4612-1994-1, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston (1998). (1998) Zbl0914.35001MR1638817DOI10.1007/978-1-4612-1994-1
- Altaç, Z., Tekkalmaz, M., 10.1016/j.jqsrt.2007.07.016, J. Quant. Spect. Rad. Transfer 109 (2008), 587-607. (2008) DOI10.1016/j.jqsrt.2007.07.016
- Altaç, Z., Tekkalmaz, M., 10.2514/1.50910, J. Thermophys. Heat Transf. 25 (2011), 228-238. (2011) DOI10.2514/1.50910
- Atkinson, K., Chandler, G., 10.1216/jiea/1181074231, J. Integral Equations Appl. 10 (1998), 253-290. (1998) Zbl0914.65137MR1656533DOI10.1216/jiea/1181074231
- Atkinson, K., Chien, D. D.-K., Seol, J., Numerical analysis of the radiosity equation using the collocation method, ETNA, Electron. Trans. Numer. Anal. 11 (2000), 94-120. (2000) Zbl0961.65118MR1799026
- Białecki, R. A., Grela, Ł., Application of the boundary element method in radiation, Mech. Teor. Stosow. 36 (1998), 347-364. (1998) Zbl0934.74076
- Blobner, J., Białecki, R. A., Kuhn, G., 10.1080/104077901750188840, Numer. Heat Transfer, Part B 39 (2001), 451-478. (2001) DOI10.1080/104077901750188840
- Chen, S.-S., Li, B.-W., Tian, X.-Y., 10.1080/10407790.2016.1193398, Numer. Heat Transfer, Part B 70 (2016), 215-232. (2016) DOI10.1080/10407790.2016.1193398
- Cohen, M. F., Wallace, J. R., Radiosity and Realistic Image Synthesis, Academic Press Professional, Boston (1993). (1993) Zbl0814.68138
- Crosbie, A. L., Schrenker, R. G., 10.1016/0022-4073(82)90017-6, J. Quant. Spect. Rad. Transfer 28 (1982), 507-526. (1982) DOI10.1016/0022-4073(82)90017-6
- Crosbie, A. L., Schrenker, R. G., 10.1016/0022-4073(84)90095-5, J. Quant. Spect. Rad. Transfer 31 (1984), 339-372. (1984) DOI10.1016/0022-4073(84)90095-5
- Eberwien, U., Duenser, C., Moser, W., 10.1016/j.enganabound.2005.01.008, Eng. Anal. Bound. Elem. 29 (2005), 447-453. (2005) Zbl1182.74214DOI10.1016/j.enganabound.2005.01.008
- Emery, A. F., Johansson, O., Lobo, M., Abrous, A., 10.1115/1.2910577, J. Heat Transfer 113 (1991), 413-422. (1991) DOI10.1115/1.2910577
- Hansen, O., 10.1137/S0036141000378103, SIAM J. Math. Anal. 33 (2001), 718-750. (2001) Zbl1001.45002MR1871418DOI10.1137/S0036141000378103
- Howell, J. R., Mengüç, M. P., Siegel, R., 10.1201/9781439894552, CRC Press, Boca Raton (2010). (2010) DOI10.1201/9781439894552
- Hsu, P.-F., Tan, Z., 10.1080/10407789708914066, Numer. Heat Transfer, Part A 31 (1997), 819-835. (1997) DOI10.1080/10407789708914066
- Kress, R., 10.1007/978-1-4614-9593-2, Applied Mathematical Sciences 82, Springer, New York (2014). (2014) Zbl1328.45001MR3184286DOI10.1007/978-1-4614-9593-2
- Laitinen, M. T., Tiihonen, T., 10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U, Math. Methods Appl. Sci. 21 (1998), 375-392. (1998) Zbl0958.80003MR1608072DOI10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U
- Li, B. Q., Cui, X., Song, S. P., 10.1016/j.enganabound.2004.01.009, Eng. Anal. Bound. Elem. 28 (2004), 881-892. (2004) Zbl1066.80008DOI10.1016/j.enganabound.2004.01.009
- Malalasekera, W. M., James, E. H., 10.1115/1.2824045, ASME J. Heat Transfer 118 (1996), 225-228. (1996) DOI10.1115/1.2824045
- Modest, M. F., 10.1016/C2010-0-65874-3, Academic Press, Oxford (2013). (2013) DOI10.1016/C2010-0-65874-3
- Qatanani, N. A., Daraghmeh, A., Asymptotic error analysis for the heat radiation boundary integral equation, Eur. J. Math. Sci. 2 (2013), 51-61. (2013)
- Sun, B., Zheng, D., Klimpke, B., Yildir, B., 10.1016/S0955-7997(97)00068-4, Eng. Anal. Bound. Elem. 21 (1998), 93-104. (1998) Zbl0936.80006DOI10.1016/S0955-7997(97)00068-4
- Tan, Z., 10.1115/1.3250636, J. Heat Transfer 111 (1989), 141-147. (1989) DOI10.1115/1.3250636
- Thynell, S. T., 10.1016/0022-4073(89)90094-0, J. Quant. Spect. Rad. Transfer 42 (1989), 117-136. (1989) DOI10.1016/0022-4073(89)90094-0
- Tiihonen, T., 10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B, Math. Methods Appl. Sci. 20 (1997), 47-57. (1997) Zbl0872.35044MR1429330DOI10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B
- Trivic, D. N., Amon, C. H., 10.1016/j.ijheatmasstransfer.2007.10.015, Int. J. Heat Mass Transfer 51 (2008), 2711-2732. (2008) Zbl1143.80329DOI10.1016/j.ijheatmasstransfer.2007.10.015
- Viskanta, R., 10.1016/s0065-2717(08)70052-2, Adv. Heat Transfer 3 (1966), 175-251. (1966) Zbl0139.23801DOI10.1016/s0065-2717(08)70052-2
- Watt, A., Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley Publishing Company, Wokingham (1989). (1989) Zbl0702.68099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.