Mathematical and numerical analysis of radiative heat transfer in semi-transparent media

Yao-Chuang Han; Yu-Feng Nie; Zhan-Bin Yuan

Applications of Mathematics (2019)

  • Volume: 64, Issue: 1, page 75-100
  • ISSN: 0862-7940

Abstract

top
This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.

How to cite

top

Han, Yao-Chuang, Nie, Yu-Feng, and Yuan, Zhan-Bin. "Mathematical and numerical analysis of radiative heat transfer in semi-transparent media." Applications of Mathematics 64.1 (2019): 75-100. <http://eudml.org/doc/294670>.

@article{Han2019,
abstract = {This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.},
author = {Han, Yao-Chuang, Nie, Yu-Feng, Yuan, Zhan-Bin},
journal = {Applications of Mathematics},
keywords = {radiative heat transfer; existence and uniqueness; collocation-boundary element method; shadow detection; iterative nonlinear solver},
language = {eng},
number = {1},
pages = {75-100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mathematical and numerical analysis of radiative heat transfer in semi-transparent media},
url = {http://eudml.org/doc/294670},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Han, Yao-Chuang
AU - Nie, Yu-Feng
AU - Yuan, Zhan-Bin
TI - Mathematical and numerical analysis of radiative heat transfer in semi-transparent media
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 75
EP - 100
AB - This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.
LA - eng
KW - radiative heat transfer; existence and uniqueness; collocation-boundary element method; shadow detection; iterative nonlinear solver
UR - http://eudml.org/doc/294670
ER -

References

top
  1. Adams, M. L., Larsen, E. W., 10.1016/S0149-1970(01)00023-3, Progr. Nucl. Energy 40 (2002), 3-159. (2002) DOI10.1016/S0149-1970(01)00023-3
  2. Agoshkov, V., 10.1007/978-1-4612-1994-1, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston (1998). (1998) Zbl0914.35001MR1638817DOI10.1007/978-1-4612-1994-1
  3. Altaç, Z., Tekkalmaz, M., 10.1016/j.jqsrt.2007.07.016, J. Quant. Spect. Rad. Transfer 109 (2008), 587-607. (2008) DOI10.1016/j.jqsrt.2007.07.016
  4. Altaç, Z., Tekkalmaz, M., 10.2514/1.50910, J. Thermophys. Heat Transf. 25 (2011), 228-238. (2011) DOI10.2514/1.50910
  5. Atkinson, K., Chandler, G., 10.1216/jiea/1181074231, J. Integral Equations Appl. 10 (1998), 253-290. (1998) Zbl0914.65137MR1656533DOI10.1216/jiea/1181074231
  6. Atkinson, K., Chien, D. D.-K., Seol, J., Numerical analysis of the radiosity equation using the collocation method, ETNA, Electron. Trans. Numer. Anal. 11 (2000), 94-120. (2000) Zbl0961.65118MR1799026
  7. Białecki, R. A., Grela, Ł., Application of the boundary element method in radiation, Mech. Teor. Stosow. 36 (1998), 347-364. (1998) Zbl0934.74076
  8. Blobner, J., Białecki, R. A., Kuhn, G., 10.1080/104077901750188840, Numer. Heat Transfer, Part B 39 (2001), 451-478. (2001) DOI10.1080/104077901750188840
  9. Chen, S.-S., Li, B.-W., Tian, X.-Y., 10.1080/10407790.2016.1193398, Numer. Heat Transfer, Part B 70 (2016), 215-232. (2016) DOI10.1080/10407790.2016.1193398
  10. Cohen, M. F., Wallace, J. R., Radiosity and Realistic Image Synthesis, Academic Press Professional, Boston (1993). (1993) Zbl0814.68138
  11. Crosbie, A. L., Schrenker, R. G., 10.1016/0022-4073(82)90017-6, J. Quant. Spect. Rad. Transfer 28 (1982), 507-526. (1982) DOI10.1016/0022-4073(82)90017-6
  12. Crosbie, A. L., Schrenker, R. G., 10.1016/0022-4073(84)90095-5, J. Quant. Spect. Rad. Transfer 31 (1984), 339-372. (1984) DOI10.1016/0022-4073(84)90095-5
  13. Eberwien, U., Duenser, C., Moser, W., 10.1016/j.enganabound.2005.01.008, Eng. Anal. Bound. Elem. 29 (2005), 447-453. (2005) Zbl1182.74214DOI10.1016/j.enganabound.2005.01.008
  14. Emery, A. F., Johansson, O., Lobo, M., Abrous, A., 10.1115/1.2910577, J. Heat Transfer 113 (1991), 413-422. (1991) DOI10.1115/1.2910577
  15. Hansen, O., 10.1137/S0036141000378103, SIAM J. Math. Anal. 33 (2001), 718-750. (2001) Zbl1001.45002MR1871418DOI10.1137/S0036141000378103
  16. Howell, J. R., Mengüç, M. P., Siegel, R., 10.1201/9781439894552, CRC Press, Boca Raton (2010). (2010) DOI10.1201/9781439894552
  17. Hsu, P.-F., Tan, Z., 10.1080/10407789708914066, Numer. Heat Transfer, Part A 31 (1997), 819-835. (1997) DOI10.1080/10407789708914066
  18. Kress, R., 10.1007/978-1-4614-9593-2, Applied Mathematical Sciences 82, Springer, New York (2014). (2014) Zbl1328.45001MR3184286DOI10.1007/978-1-4614-9593-2
  19. Laitinen, M. T., Tiihonen, T., 10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U, Math. Methods Appl. Sci. 21 (1998), 375-392. (1998) Zbl0958.80003MR1608072DOI10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U
  20. Li, B. Q., Cui, X., Song, S. P., 10.1016/j.enganabound.2004.01.009, Eng. Anal. Bound. Elem. 28 (2004), 881-892. (2004) Zbl1066.80008DOI10.1016/j.enganabound.2004.01.009
  21. Malalasekera, W. M., James, E. H., 10.1115/1.2824045, ASME J. Heat Transfer 118 (1996), 225-228. (1996) DOI10.1115/1.2824045
  22. Modest, M. F., 10.1016/C2010-0-65874-3, Academic Press, Oxford (2013). (2013) DOI10.1016/C2010-0-65874-3
  23. Qatanani, N. A., Daraghmeh, A., Asymptotic error analysis for the heat radiation boundary integral equation, Eur. J. Math. Sci. 2 (2013), 51-61. (2013) 
  24. Sun, B., Zheng, D., Klimpke, B., Yildir, B., 10.1016/S0955-7997(97)00068-4, Eng. Anal. Bound. Elem. 21 (1998), 93-104. (1998) Zbl0936.80006DOI10.1016/S0955-7997(97)00068-4
  25. Tan, Z., 10.1115/1.3250636, J. Heat Transfer 111 (1989), 141-147. (1989) DOI10.1115/1.3250636
  26. Thynell, S. T., 10.1016/0022-4073(89)90094-0, J. Quant. Spect. Rad. Transfer 42 (1989), 117-136. (1989) DOI10.1016/0022-4073(89)90094-0
  27. Tiihonen, T., 10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B, Math. Methods Appl. Sci. 20 (1997), 47-57. (1997) Zbl0872.35044MR1429330DOI10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B
  28. Trivic, D. N., Amon, C. H., 10.1016/j.ijheatmasstransfer.2007.10.015, Int. J. Heat Mass Transfer 51 (2008), 2711-2732. (2008) Zbl1143.80329DOI10.1016/j.ijheatmasstransfer.2007.10.015
  29. Viskanta, R., 10.1016/s0065-2717(08)70052-2, Adv. Heat Transfer 3 (1966), 175-251. (1966) Zbl0139.23801DOI10.1016/s0065-2717(08)70052-2
  30. Watt, A., Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley Publishing Company, Wokingham (1989). (1989) Zbl0702.68099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.