A note on the open packing number in graphs
Mehdi Mohammadi; Mohammad Maghasedi
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 221-224
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMohammadi, Mehdi, and Maghasedi, Mohammad. "A note on the open packing number in graphs." Mathematica Bohemica 144.2 (2019): 221-224. <http://eudml.org/doc/294677>.
@article{Mohammadi2019,
abstract = {A subset $S$ of vertices in a graph $G$ is an open packing set if no pair of vertices of $S$ has a common neighbor in $G$. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by $\rho ^\{\rm o\}(G)$. A subset $S$ in a graph $G$ with no isolated vertex is called a total dominating set if any vertex of $G$ is adjacent to some vertex of $S$. The total domination number of $G$, denoted by $\gamma _t(G)$, is the minimum cardinality of a total dominating set of $G$. We characterize graphs of order $n$ and minimium degree at least two with $\rho ^\{\rm o\}(G)=\gamma _t(G)=\frac\{1\}\{2\}n$.},
author = {Mohammadi, Mehdi, Maghasedi, Mohammad},
journal = {Mathematica Bohemica},
keywords = {packing; open packing; total domination},
language = {eng},
number = {2},
pages = {221-224},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the open packing number in graphs},
url = {http://eudml.org/doc/294677},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Mohammadi, Mehdi
AU - Maghasedi, Mohammad
TI - A note on the open packing number in graphs
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 221
EP - 224
AB - A subset $S$ of vertices in a graph $G$ is an open packing set if no pair of vertices of $S$ has a common neighbor in $G$. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by $\rho ^{\rm o}(G)$. A subset $S$ in a graph $G$ with no isolated vertex is called a total dominating set if any vertex of $G$ is adjacent to some vertex of $S$. The total domination number of $G$, denoted by $\gamma _t(G)$, is the minimum cardinality of a total dominating set of $G$. We characterize graphs of order $n$ and minimium degree at least two with $\rho ^{\rm o}(G)=\gamma _t(G)=\frac{1}{2}n$.
LA - eng
KW - packing; open packing; total domination
UR - http://eudml.org/doc/294677
ER -
References
top- Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., Yuster, R., 10.1002/jgt.20000, J. Graph Theory 46 (2004), 207-210. (2004) Zbl1041.05057MR2063370DOI10.1002/jgt.20000
- Biggs, N., 10.1016/0095-8956(73)90042-7, J. Comb. Theory, Ser. B 15 (1973), 289-296. (1973) Zbl0256.94009MR0325457DOI10.1016/0095-8956(73)90042-7
- Chartrand, G., Lesniak, L., Graphs & Digraphs, Chapman & Hall/CRC, Boca Raton (2005). (2005) Zbl1057.05001MR2107429
- Clark, L., Perfect domination in random graphs, J. Comb. Math. Comb. Comput. 14 (1993), 173-182. (1993) Zbl0793.05106MR1238868
- Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T., 10.1002/net.3230100304, Networks 10 (1980), 211-219. (1980) Zbl0447.05039MR0584887DOI10.1002/net.3230100304
- Cockayne, E. J., Hartnell, B. L., Hedetniemi, S. T., Laskar, R., Perfect domination in graphs, J. Comb. Inf. Syst. Sci. 18 (1993), 136-148. (1993) Zbl0855.05073MR1317698
- Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, New York (1998). (1998) Zbl0890.05002MR1605684
- Henning, M. A., 10.1016/S0012-365X(97)00228-8, Discrete Math. 186 (1998), 145-155. (1998) Zbl0957.05090MR1623900DOI10.1016/S0012-365X(97)00228-8
- Henning, M. A., Slater, P. J., Open packing in graphs, J. Comb. Math. Comb. Comput. 29 (1999), 3-16. (1999) Zbl0922.05040MR1677666
- Henning, M. A., Yeo, A., 10.1007/978-1-4614-6525-6, Springer Monographs in Mathematics. Springer, New York (2013). (2013) Zbl06150331MR3060714DOI10.1007/978-1-4614-6525-6
- Meir, A., Moon, J. W., 10.2140/pjm.1975.61.225, Pac. J. Math. 61 (1975), 225-233. (1975) Zbl0315.05102MR0401519DOI10.2140/pjm.1975.61.225
- Rall, D. F., 10.7151/dmgt.1257, Discuss. Math., Graph Theory 25 (2005), 35-44. (2005) Zbl1074.05068MR2152047DOI10.7151/dmgt.1257
- Hamid, I. Sahul, Saravanakumar, S., 10.7151/dmgt.1775, Discuss. Math., Graph Theory 35 (2015), 5-16. (2015) Zbl1307.05183MR3313234DOI10.7151/dmgt.1775
- Hamid, I. Sahul, Saravanakumar, S., 10.7508/ijmsi.2017.01.009, Iran. J. Math. Sci. Inform. 12 (2017), 107-117. (2017) Zbl1375.05214MR3726632DOI10.7508/ijmsi.2017.01.009
- Topp, J., Volkmann, L., 10.1016/0012-365X(91)90316-T, Discrete Math. 96 (1991), 229-238. (1991) Zbl0759.05077MR1139450DOI10.1016/0012-365X(91)90316-T
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.