Character Connes amenability of dual Banach algebras
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 243-255
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRamezanpour, Mohammad. "Character Connes amenability of dual Banach algebras." Czechoslovak Mathematical Journal 68.1 (2018): 243-255. <http://eudml.org/doc/294686>.
@article{Ramezanpour2018,
abstract = {We study the notion of character Connes amenability of dual Banach algebras and show that if $A$ is an Arens regular Banach algebra, then $A^\{**\}$ is character Connes amenable if and only if $A$ is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension of Banach algebras. These help us to give examples of dual Banach algebras which are not Connes amenable.},
author = {Ramezanpour, Mohammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {dual Banach algebra; Connes amenability; character amenability; locally compact group},
language = {eng},
number = {1},
pages = {243-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Character Connes amenability of dual Banach algebras},
url = {http://eudml.org/doc/294686},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Ramezanpour, Mohammad
TI - Character Connes amenability of dual Banach algebras
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 243
EP - 255
AB - We study the notion of character Connes amenability of dual Banach algebras and show that if $A$ is an Arens regular Banach algebra, then $A^{**}$ is character Connes amenable if and only if $A$ is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension of Banach algebras. These help us to give examples of dual Banach algebras which are not Connes amenable.
LA - eng
KW - dual Banach algebra; Connes amenability; character amenability; locally compact group
UR - http://eudml.org/doc/294686
ER -
References
top- Bonsall, F. F., Duncan, J., 10.1007/978-3-642-65669-9, Ergebnisse der Mathematik und ihrer Grenzgebiete 80, Springer, Berlin (1973). (1973) Zbl0271.46039MR0423029DOI10.1007/978-3-642-65669-9
- Daws, M., 10.7146/math.scand.a-15010, Math. Scand. 99 (2006), 217-246. (2006) Zbl1142.46320MR2289023DOI10.7146/math.scand.a-15010
- Effros, E. G., 10.1016/0022-1236(88)90136-X, J. Funct. Anal. 78 (1988), 137-153. (1988) Zbl0655.46053MR0937636DOI10.1016/0022-1236(88)90136-X
- Eymard, P., 10.24033/bsmf.1607, Bull. Soc. Math. Fr. 92 (1964), 181-236 French. (1964) Zbl0169.46403MR0228628DOI10.24033/bsmf.1607
- Folland, G. B., A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). (1995) Zbl0857.43001MR1397028
- Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley & Sons, New York (1999). (1999) Zbl0924.28001MR1681462
- Hayati, B., Amini, M., 10.1215/0023608X-2009-003, Kyoto J. Math. 50 (2010), 41-50. (2010) Zbl1201.46043MR2629641DOI10.1215/0023608X-2009-003
- Helemskiĭ, A. Ya., 10.1070/SM1991v068n02ABEH001374, Math. USSR, Sb. 68 (1990), 555-566. English. Russian original translation from Mat. Sb. 180 1989 1680-1690. (1990) Zbl0721.46041MR1038222DOI10.1070/SM1991v068n02ABEH001374
- Hu, Z., Monfared, M. S., Traynor, T., 10.4064/sm193-1-3, Stud. Math. 193 (2009), 53-78. (2009) Zbl1175.22005MR2506414DOI10.4064/sm193-1-3
- Johnson, B. E., 10.1090/memo/0127, Memoirs of the American Mathematical Society 127, American Mathematical Society, Providence (1972). (1972) Zbl0256.18014MR0374934DOI10.1090/memo/0127
- Johnson, B. E., Kadison, R. V., Ringrose, J. R., 10.24033/bsmf.1731, Bull. Soc. Math. Fr. 100 (1972), 73-96. (1972) Zbl0234.46066MR0318908DOI10.24033/bsmf.1731
- Kaniuth, E., Lau, A. T., Pym, J., 10.1016/j.jmaa.2008.03.037, J. Math. Anal. Appl. 344 (2008), 942-955. (2008) Zbl1151.46035MR2426323DOI10.1016/j.jmaa.2008.03.037
- Kaniuth, E., Lau, A. T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Camb. Phil. Soc. 144 (2008), 85-96. (2008) Zbl1145.46027MR2388235DOI10.1017/S0305004107000874
- Lau, A. T., 10.4064/fm-118-3-161-175, Fundam. Math. 118 (1983), 161-175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
- Mahmoodi, A., On -Connes amenability of dual Banach algebras, J. Linear Topol. Algebra 3 (2014), 211-217. (2014) MR3541353
- Monfared, M. S., 10.4064/sm178-3-4, Stud. Math. 178 (2007), 277-294. (2007) Zbl1121.46041MR2289357DOI10.4064/sm178-3-4
- Monfared, M. S., 10.1017/S0305004108001126, Math. Proc. Camb. Phil. Soc. 144 (2008), 697-706. (2008) Zbl1153.46029MR2418712DOI10.1017/S0305004108001126
- Nasr-Isfahani, R., Renani, S. S., 10.4064/sm202-3-1, Stud. Math. 202 (2011), 205-225. (2011) Zbl1236.46045MR2771651DOI10.4064/sm202-3-1
- Runde, V., 10.4064/sm148-1-5, Stud. Math. 148 (2001), 47-66. (2001) Zbl1003.46028MR1881439DOI10.4064/sm148-1-5
- Runde, V., 10.1007/b82937, Lecture Notes in Mathematics 1774, Springer, Berlin (2002). (2002) Zbl0999.46022MR1874893DOI10.1007/b82937
- Runde, V., 10.1112/s0024610703004125, J. Lond. Math. Soc., II. Ser. 67 (2003), 643-656. (2003) Zbl1040.22002MR1967697DOI10.1112/s0024610703004125
- Runde, V., 10.1017/s0004972700037709, Bull Aust. Math. Soc. 68 (2003), 325-328. (2003) Zbl1042.22001MR2016307DOI10.1017/s0004972700037709
- Runde, V., 10.7146/math.scand.a-14452, Math. Scand. 95 (2004), 124-144. (2004) Zbl1087.46035MR2091485DOI10.7146/math.scand.a-14452
- Runde, V., Uygul, F., 10.1112/blms/bdv030, Bull. Lond. Math. Soc. 47 (2015), 555-564. (2015) Zbl1335.46041MR3375923DOI10.1112/blms/bdv030
- Zhang, Y., 10.1090/S0002-9947-02-03039-8, Trans. Am. Math. Soc. 354 (2002), 4131-4151. (2002) Zbl1008.46019MR1926868DOI10.1090/S0002-9947-02-03039-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.