Character Connes amenability of dual Banach algebras

Mohammad Ramezanpour

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 243-255
  • ISSN: 0011-4642

Abstract

top
We study the notion of character Connes amenability of dual Banach algebras and show that if A is an Arens regular Banach algebra, then A * * is character Connes amenable if and only if A is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension of Banach algebras. These help us to give examples of dual Banach algebras which are not Connes amenable.

How to cite

top

Ramezanpour, Mohammad. "Character Connes amenability of dual Banach algebras." Czechoslovak Mathematical Journal 68.1 (2018): 243-255. <http://eudml.org/doc/294686>.

@article{Ramezanpour2018,
abstract = {We study the notion of character Connes amenability of dual Banach algebras and show that if $A$ is an Arens regular Banach algebra, then $A^\{**\}$ is character Connes amenable if and only if $A$ is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension of Banach algebras. These help us to give examples of dual Banach algebras which are not Connes amenable.},
author = {Ramezanpour, Mohammad},
journal = {Czechoslovak Mathematical Journal},
keywords = {dual Banach algebra; Connes amenability; character amenability; locally compact group},
language = {eng},
number = {1},
pages = {243-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Character Connes amenability of dual Banach algebras},
url = {http://eudml.org/doc/294686},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Ramezanpour, Mohammad
TI - Character Connes amenability of dual Banach algebras
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 243
EP - 255
AB - We study the notion of character Connes amenability of dual Banach algebras and show that if $A$ is an Arens regular Banach algebra, then $A^{**}$ is character Connes amenable if and only if $A$ is character amenable, which will resolve positively Runde’s problem for this concept of amenability. We then characterize character Connes amenability of various dual Banach algebras related to locally compact groups. We also investigate character Connes amenability of Lau product and module extension of Banach algebras. These help us to give examples of dual Banach algebras which are not Connes amenable.
LA - eng
KW - dual Banach algebra; Connes amenability; character amenability; locally compact group
UR - http://eudml.org/doc/294686
ER -

References

top
  1. Bonsall, F. F., Duncan, J., 10.1007/978-3-642-65669-9, Ergebnisse der Mathematik und ihrer Grenzgebiete 80, Springer, Berlin (1973). (1973) Zbl0271.46039MR0423029DOI10.1007/978-3-642-65669-9
  2. Daws, M., 10.7146/math.scand.a-15010, Math. Scand. 99 (2006), 217-246. (2006) Zbl1142.46320MR2289023DOI10.7146/math.scand.a-15010
  3. Effros, E. G., 10.1016/0022-1236(88)90136-X, J. Funct. Anal. 78 (1988), 137-153. (1988) Zbl0655.46053MR0937636DOI10.1016/0022-1236(88)90136-X
  4. Eymard, P., 10.24033/bsmf.1607, Bull. Soc. Math. Fr. 92 (1964), 181-236 French. (1964) Zbl0169.46403MR0228628DOI10.24033/bsmf.1607
  5. Folland, G. B., A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). (1995) Zbl0857.43001MR1397028
  6. Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley & Sons, New York (1999). (1999) Zbl0924.28001MR1681462
  7. Hayati, B., Amini, M., 10.1215/0023608X-2009-003, Kyoto J. Math. 50 (2010), 41-50. (2010) Zbl1201.46043MR2629641DOI10.1215/0023608X-2009-003
  8. Helemskiĭ, A. Ya., 10.1070/SM1991v068n02ABEH001374, Math. USSR, Sb. 68 (1990), 555-566. English. Russian original translation from Mat. Sb. 180 1989 1680-1690. (1990) Zbl0721.46041MR1038222DOI10.1070/SM1991v068n02ABEH001374
  9. Hu, Z., Monfared, M. S., Traynor, T., 10.4064/sm193-1-3, Stud. Math. 193 (2009), 53-78. (2009) Zbl1175.22005MR2506414DOI10.4064/sm193-1-3
  10. Johnson, B. E., 10.1090/memo/0127, Memoirs of the American Mathematical Society 127, American Mathematical Society, Providence (1972). (1972) Zbl0256.18014MR0374934DOI10.1090/memo/0127
  11. Johnson, B. E., Kadison, R. V., Ringrose, J. R., 10.24033/bsmf.1731, Bull. Soc. Math. Fr. 100 (1972), 73-96. (1972) Zbl0234.46066MR0318908DOI10.24033/bsmf.1731
  12. Kaniuth, E., Lau, A. T., Pym, J., 10.1016/j.jmaa.2008.03.037, J. Math. Anal. Appl. 344 (2008), 942-955. (2008) Zbl1151.46035MR2426323DOI10.1016/j.jmaa.2008.03.037
  13. Kaniuth, E., Lau, A. T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Camb. Phil. Soc. 144 (2008), 85-96. (2008) Zbl1145.46027MR2388235DOI10.1017/S0305004107000874
  14. Lau, A. T., 10.4064/fm-118-3-161-175, Fundam. Math. 118 (1983), 161-175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
  15. Mahmoodi, A., On ϕ -Connes amenability of dual Banach algebras, J. Linear Topol. Algebra 3 (2014), 211-217. (2014) MR3541353
  16. Monfared, M. S., 10.4064/sm178-3-4, Stud. Math. 178 (2007), 277-294. (2007) Zbl1121.46041MR2289357DOI10.4064/sm178-3-4
  17. Monfared, M. S., 10.1017/S0305004108001126, Math. Proc. Camb. Phil. Soc. 144 (2008), 697-706. (2008) Zbl1153.46029MR2418712DOI10.1017/S0305004108001126
  18. Nasr-Isfahani, R., Renani, S. S., 10.4064/sm202-3-1, Stud. Math. 202 (2011), 205-225. (2011) Zbl1236.46045MR2771651DOI10.4064/sm202-3-1
  19. Runde, V., 10.4064/sm148-1-5, Stud. Math. 148 (2001), 47-66. (2001) Zbl1003.46028MR1881439DOI10.4064/sm148-1-5
  20. Runde, V., 10.1007/b82937, Lecture Notes in Mathematics 1774, Springer, Berlin (2002). (2002) Zbl0999.46022MR1874893DOI10.1007/b82937
  21. Runde, V., 10.1112/s0024610703004125, J. Lond. Math. Soc., II. Ser. 67 (2003), 643-656. (2003) Zbl1040.22002MR1967697DOI10.1112/s0024610703004125
  22. Runde, V., 10.1017/s0004972700037709, Bull Aust. Math. Soc. 68 (2003), 325-328. (2003) Zbl1042.22001MR2016307DOI10.1017/s0004972700037709
  23. Runde, V., 10.7146/math.scand.a-14452, Math. Scand. 95 (2004), 124-144. (2004) Zbl1087.46035MR2091485DOI10.7146/math.scand.a-14452
  24. Runde, V., Uygul, F., 10.1112/blms/bdv030, Bull. Lond. Math. Soc. 47 (2015), 555-564. (2015) Zbl1335.46041MR3375923DOI10.1112/blms/bdv030
  25. Zhang, Y., 10.1090/S0002-9947-02-03039-8, Trans. Am. Math. Soc. 354 (2002), 4131-4151. (2002) Zbl1008.46019MR1926868DOI10.1090/S0002-9947-02-03039-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.