On the generalized vanishing conjecture
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1061-1068
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFeng, Zhenzhen, and Sun, Xiaosong. "On the generalized vanishing conjecture." Czechoslovak Mathematical Journal 69.4 (2019): 1061-1068. <http://eudml.org/doc/294692>.
@article{Feng2019,
abstract = {We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.},
author = {Feng, Zhenzhen, Sun, Xiaosong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobian conjecture; generalized vanishing conjecture; differential operator},
language = {eng},
number = {4},
pages = {1061-1068},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the generalized vanishing conjecture},
url = {http://eudml.org/doc/294692},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Feng, Zhenzhen
AU - Sun, Xiaosong
TI - On the generalized vanishing conjecture
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1061
EP - 1068
AB - We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
LA - eng
KW - Jacobian conjecture; generalized vanishing conjecture; differential operator
UR - http://eudml.org/doc/294692
ER -
References
top- Adjamagbo, P. K., Essen, A. van den, A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures, Acta Math. Vietnam. 32 (2007), 205-214. (2007) Zbl1137.14046MR2368008
- Bass, H., Connell, E. H., Wright, D., 10.1090/S0273-0979-1982-15032-7, Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. (1982) Zbl0539.13012MR0663785DOI10.1090/S0273-0979-1982-15032-7
- Belov-Kanel, A., Kontsevich, M., 10.17323/1609-4514-2007-7-2-209-218, Mosc. Math. J. 7 (2007), 209-218. (2007) Zbl1128.16014MR2337879DOI10.17323/1609-4514-2007-7-2-209-218
- Bondt, M. de, 10.1007/s00013-013-0523-2, Arch. Math. 100 (2013), 533-538. (2013) Zbl1273.13046MR3069106DOI10.1007/s00013-013-0523-2
- Bondt, M. de, Essen, A. van den, 10.1016/j.jpaa.2004.03.003, J. Pure Appl. Algebra 193 (2004), 61-70. (2004) Zbl1054.14083MR2076378DOI10.1016/j.jpaa.2004.03.003
- Bondt, M. de, Essen, A. van den, 10.1090/S0002-9939-05-07570-2, Proc. Am. Math. Soc. 133 (2005), 2201-2205. (2005) Zbl1073.14077MR2138860DOI10.1090/S0002-9939-05-07570-2
- Bondt, M. de, Essen, A. van den, 10.1016/j.jpaa.2004.08.030, J. Pure Appl. Algebra 196 (2005), 135-148. (2005) Zbl1077.14092MR2110519DOI10.1016/j.jpaa.2004.08.030
- Liu, D., Sun, X., 10.1017/S0004972717000454, Bull. Aust. Math. Soc. 96 (2017), 205-211. (2017) Zbl1390.13078MR3703902DOI10.1017/S0004972717000454
- Mathieu, O., Some conjectures about invariant theory and their applications, Algèbre non commutative, groupes quantiques et invariants Alev, J. et al. Sémin. Congr. 2, Société Mathématique de France, Paris (1995), 263-279. (1995) Zbl0889.22008MR1601155
- Meng, G., 10.1016/j.aml.2005.07.006, Appl. Math. Lett. 19 (2006), 503-510. (2006) Zbl1132.14340MR2221506DOI10.1016/j.aml.2005.07.006
- Sun, X., 10.1016/j.jalgebra.2017.09.020, J. Algebra 492 (2017), 414-418. (2017) Zbl1386.14208MR3709158DOI10.1016/j.jalgebra.2017.09.020
- Tsuchimoto, Y., Endomorphisms of Weyl algebra and -curvatures, Osaka J. Math. 42 (2005), 435-452. (2005) Zbl1105.16024MR2147727
- Essen, A. van den, 10.1007/978-3-0348-8440-2, Progress in Mathematics 190, Birkhäuser, Basel (2000). (2000) Zbl0962.14037MR1790619DOI10.1007/978-3-0348-8440-2
- Essen, A. van den, Sun, X., 10.1016/j.jpaa.2017.12.003, J. Pure Appl. Algebra 222 (2018), 3219-3223. (2018) Zbl06867612MR3795641DOI10.1016/j.jpaa.2017.12.003
- Essen, A. van den, Willems, R., Zhao, W., 10.1016/j.jpaa.2014.12.024, J. Pure Appl. Algebra 219 (2015), 3847-3861. (2015) Zbl1317.33007MR3335985DOI10.1016/j.jpaa.2014.12.024
- Essen, A. van den, Wright, D., Zhao, W., 10.1016/j.jalgebra.2011.04.036, J. Algebra 340 (2011), 211-224. (2011) Zbl1235.14057MR2813570DOI10.1016/j.jalgebra.2011.04.036
- Essen, A. van den, Zhao, W., 10.1016/j.jpaa.2008.01.005, J. Pure Appl. Algebra 212 (2008), 2190-2193. (2008) Zbl1147.14033MR2418165DOI10.1016/j.jpaa.2008.01.005
- Wright, D., The Jacobian conjecture as a problem in combinatorics, Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. (2007) Zbl1129.14087MR2330486
- Zhao, W., A vanishing conjecture on differential operators with constant coefficients, Acta Math. Vietnam. 32 (2007), 259-286. (2007) Zbl1139.14303MR2368014
- Zhao, W., 10.1090/S0002-9947-06-03898-0, Trans. Am. Math. Soc. 359 (2007), 249-274. (2007) Zbl1109.14041MR2247890DOI10.1090/S0002-9947-06-03898-0
- Zhao, W., 10.1016/j.jalgebra.2010.04.022, J. Algebra 324 (2010), 231-247. (2010) Zbl1197.14064MR2651354DOI10.1016/j.jalgebra.2010.04.022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.