On the generalized vanishing conjecture

Zhenzhen Feng; Xiaosong Sun

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1061-1068
  • ISSN: 0011-4642

Abstract

top
We show that the GVC (generalized vanishing conjecture) holds for the differential operator Λ = ( x - Φ ( y ) ) y and all polynomials P ( x , y ) , where Φ ( t ) is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.

How to cite

top

Feng, Zhenzhen, and Sun, Xiaosong. "On the generalized vanishing conjecture." Czechoslovak Mathematical Journal 69.4 (2019): 1061-1068. <http://eudml.org/doc/294692>.

@article{Feng2019,
abstract = {We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.},
author = {Feng, Zhenzhen, Sun, Xiaosong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobian conjecture; generalized vanishing conjecture; differential operator},
language = {eng},
number = {4},
pages = {1061-1068},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the generalized vanishing conjecture},
url = {http://eudml.org/doc/294692},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Feng, Zhenzhen
AU - Sun, Xiaosong
TI - On the generalized vanishing conjecture
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1061
EP - 1068
AB - We show that the GVC (generalized vanishing conjecture) holds for the differential operator $\Lambda =(\partial _x-\Phi (\partial _y))\partial _y$ and all polynomials $P(x,y)$, where $\Phi (t)$ is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.
LA - eng
KW - Jacobian conjecture; generalized vanishing conjecture; differential operator
UR - http://eudml.org/doc/294692
ER -

References

top
  1. Adjamagbo, P. K., Essen, A. van den, A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures, Acta Math. Vietnam. 32 (2007), 205-214. (2007) Zbl1137.14046MR2368008
  2. Bass, H., Connell, E. H., Wright, D., 10.1090/S0273-0979-1982-15032-7, Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. (1982) Zbl0539.13012MR0663785DOI10.1090/S0273-0979-1982-15032-7
  3. Belov-Kanel, A., Kontsevich, M., 10.17323/1609-4514-2007-7-2-209-218, Mosc. Math. J. 7 (2007), 209-218. (2007) Zbl1128.16014MR2337879DOI10.17323/1609-4514-2007-7-2-209-218
  4. Bondt, M. de, 10.1007/s00013-013-0523-2, Arch. Math. 100 (2013), 533-538. (2013) Zbl1273.13046MR3069106DOI10.1007/s00013-013-0523-2
  5. Bondt, M. de, Essen, A. van den, 10.1016/j.jpaa.2004.03.003, J. Pure Appl. Algebra 193 (2004), 61-70. (2004) Zbl1054.14083MR2076378DOI10.1016/j.jpaa.2004.03.003
  6. Bondt, M. de, Essen, A. van den, 10.1090/S0002-9939-05-07570-2, Proc. Am. Math. Soc. 133 (2005), 2201-2205. (2005) Zbl1073.14077MR2138860DOI10.1090/S0002-9939-05-07570-2
  7. Bondt, M. de, Essen, A. van den, 10.1016/j.jpaa.2004.08.030, J. Pure Appl. Algebra 196 (2005), 135-148. (2005) Zbl1077.14092MR2110519DOI10.1016/j.jpaa.2004.08.030
  8. Liu, D., Sun, X., 10.1017/S0004972717000454, Bull. Aust. Math. Soc. 96 (2017), 205-211. (2017) Zbl1390.13078MR3703902DOI10.1017/S0004972717000454
  9. Mathieu, O., Some conjectures about invariant theory and their applications, Algèbre non commutative, groupes quantiques et invariants Alev, J. et al. Sémin. Congr. 2, Société Mathématique de France, Paris (1995), 263-279. (1995) Zbl0889.22008MR1601155
  10. Meng, G., 10.1016/j.aml.2005.07.006, Appl. Math. Lett. 19 (2006), 503-510. (2006) Zbl1132.14340MR2221506DOI10.1016/j.aml.2005.07.006
  11. Sun, X., 10.1016/j.jalgebra.2017.09.020, J. Algebra 492 (2017), 414-418. (2017) Zbl1386.14208MR3709158DOI10.1016/j.jalgebra.2017.09.020
  12. Tsuchimoto, Y., Endomorphisms of Weyl algebra and p -curvatures, Osaka J. Math. 42 (2005), 435-452. (2005) Zbl1105.16024MR2147727
  13. Essen, A. van den, 10.1007/978-3-0348-8440-2, Progress in Mathematics 190, Birkhäuser, Basel (2000). (2000) Zbl0962.14037MR1790619DOI10.1007/978-3-0348-8440-2
  14. Essen, A. van den, Sun, X., 10.1016/j.jpaa.2017.12.003, J. Pure Appl. Algebra 222 (2018), 3219-3223. (2018) Zbl06867612MR3795641DOI10.1016/j.jpaa.2017.12.003
  15. Essen, A. van den, Willems, R., Zhao, W., 10.1016/j.jpaa.2014.12.024, J. Pure Appl. Algebra 219 (2015), 3847-3861. (2015) Zbl1317.33007MR3335985DOI10.1016/j.jpaa.2014.12.024
  16. Essen, A. van den, Wright, D., Zhao, W., 10.1016/j.jalgebra.2011.04.036, J. Algebra 340 (2011), 211-224. (2011) Zbl1235.14057MR2813570DOI10.1016/j.jalgebra.2011.04.036
  17. Essen, A. van den, Zhao, W., 10.1016/j.jpaa.2008.01.005, J. Pure Appl. Algebra 212 (2008), 2190-2193. (2008) Zbl1147.14033MR2418165DOI10.1016/j.jpaa.2008.01.005
  18. Wright, D., The Jacobian conjecture as a problem in combinatorics, Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. (2007) Zbl1129.14087MR2330486
  19. Zhao, W., A vanishing conjecture on differential operators with constant coefficients, Acta Math. Vietnam. 32 (2007), 259-286. (2007) Zbl1139.14303MR2368014
  20. Zhao, W., 10.1090/S0002-9947-06-03898-0, Trans. Am. Math. Soc. 359 (2007), 249-274. (2007) Zbl1109.14041MR2247890DOI10.1090/S0002-9947-06-03898-0
  21. Zhao, W., 10.1016/j.jalgebra.2010.04.022, J. Algebra 324 (2010), 231-247. (2010) Zbl1197.14064MR2651354DOI10.1016/j.jalgebra.2010.04.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.