Explicit estimation of error constants appearing in non-conforming linear triangular finite element method
Applications of Mathematics (2018)
- Volume: 63, Issue: 4, page 381-397
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Xuefeng, and Kikuchi, Fumio. "Explicit estimation of error constants appearing in non-conforming linear triangular finite element method." Applications of Mathematics 63.4 (2018): 381-397. <http://eudml.org/doc/294695>.
@article{Liu2018,
abstract = {The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.},
author = {Liu, Xuefeng, Kikuchi, Fumio},
journal = {Applications of Mathematics},
keywords = {FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element},
language = {eng},
number = {4},
pages = {381-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Explicit estimation of error constants appearing in non-conforming linear triangular finite element method},
url = {http://eudml.org/doc/294695},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Liu, Xuefeng
AU - Kikuchi, Fumio
TI - Explicit estimation of error constants appearing in non-conforming linear triangular finite element method
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 381
EP - 397
AB - The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.
LA - eng
KW - FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element
UR - http://eudml.org/doc/294695
ER -
References
top- Acosta, G., Durán, R. G., 10.1137/S0036142997331293, SIAM J. Numer. Anal. 37 (1999), 18-36. (1999) Zbl0948.65115MR1721268DOI10.1137/S0036142997331293
- Ainsworth, M., Oden, J. T., 10.1002/9781118032824, Pure and Applied Mathematics, Wiley-Interscience, New York (2000). (2000) Zbl1008.65076MR1885308DOI10.1002/9781118032824
- Arnold, D. N., Brezzi, F., 10.1051/m2an/1985190100071, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. (1985) Zbl0567.65078MR0813687DOI10.1051/m2an/1985190100071
- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). (2001) Zbl0995.65501MR1857191
- Bangerth, W., Rannacher, R., 10.1007/978-3-0348-7605-6, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2003). (2003) Zbl1020.65058MR1960405DOI10.1007/978-3-0348-7605-6
- Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8, Texts in Applied Mathematics 15, Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8
- Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15, Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
- Carstensen, C., Gedicke, J., Rim, D., 10.4208/jcm.1108-m3677, J. Comput. Math. 30 (2012), 337-353. (2012) Zbl1274.65290MR2965987DOI10.4208/jcm.1108-m3677
- Ciarlet, P. G., 10.1137/1.9780898719208, Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, Philadelphia (2002). (2002) Zbl0999.65129MR1930132DOI10.1137/1.9780898719208
- Destuynder, P., Métivet, B., 10.1090/S0025-5718-99-01093-5, Math. Comput. 68 (1999), 1379-1396. (1999) Zbl0929.65095MR1648383DOI10.1090/S0025-5718-99-01093-5
- Grisvard, P., 10.1137/1.9781611972030.ch1, Classics in Applied Mathematics 69, Society for Industrial and Applied Mathematics, Philadelphia (2011). (2011) Zbl1231.35002MR3396210DOI10.1137/1.9781611972030.ch1
- Hu, J., Ma, R., 10.1007/s10915-014-9899-9, J. Sci. Comput. 63 (2015), 410-425. (2015) Zbl1319.65111MR3328190DOI10.1007/s10915-014-9899-9
- Kikuchi, F., 10.2977/prims/1195191694, Publ. Res. Inst. Math. Sci., Kyoto Univ. 11 (1975), 247-265. (1975) Zbl0326.73065MR0391540DOI10.2977/prims/1195191694
- Kikuchi, F., Ishii, K., 10.1007/978-3-642-79654-8, S. N. Atluri, G. Yagawa, T. Cruse Computational Mechanics'95: Theory and Applications Springer, Berlin (1995), 1608-1613. (1995) DOI10.1007/978-3-642-79654-8
- Kikuchi, F., Liu, X., 10.1007/BF03167499, Japan J. Ind. Appl. Math. 23 (2006), 75-82. (2006) Zbl1098.65107MR2210297DOI10.1007/BF03167499
- Kikuchi, F., Liu, X., 10.1016/j.cma.2006.10.029, Comput. Methods Appl. Mech. Eng. 196 (2007), 3750-3758. (2007) Zbl1173.65346MR2340000DOI10.1016/j.cma.2006.10.029
- Kikuchi, F., Saito, H., 10.1016/j.cam.2005.07.031, J. Comput. Appl. Math. 199 (2007), 329-336. (2007) Zbl1109.65094MR2269515DOI10.1016/j.cam.2005.07.031
- Knabner, P., Angermann, L., 10.1007/b97419, Texts in Applied Mathematics 44, Springer, New York (2003). (2003) Zbl1034.65086MR1988268DOI10.1007/b97419
- Kobayashi, K., On the interpolation constants over triangular elements, Kyoto University Research Information Repository 1733 (2011), 58-77 Japanese. (2011)
- Kobayashi, K., On the interpolation constants over triangular elements, Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124. (2015) Zbl1363.65014MR3700193
- Liu, X., Kikuchi, F., Estimation of error constants appearing in non-conforming linear triangular finite element, Procceding of APCOM’07 in conjunction with EPMESC XI, Kyoto (2007), Available at http://www.xfliu.org/p/2007LK.pdf. (2007)
- Liu, X., Kikuchi, F., Analysis and estimation of error constants for and interpolations over triangular finite elements, J. Math. Sci., Tokyo 17 (2010), 27-78. (2010) Zbl1248.65118MR2676659
- Marini, L. D., 10.1137/0722029, SIAM J. Numer. Anal. 22 (1985), 493-496. (1985) Zbl0573.65082MR0787572DOI10.1137/0722029
- Nakao, M. T., 10.1081/NFA-100105107, Numer. Funct. Anal. Optimization 22 (2001), 321-356. (2001) Zbl1106.65315MR1849323DOI10.1081/NFA-100105107
- Nakao, M. T., Yamamoto, N., 10.1007/978-3-7091-6217-0, Topics in Numerical Analysis. With Special Emphasis on Nonlinear Problems G. Alefeld, X. Chen Comput Suppl. 15, Springer, Wien (2001), 165-173. (2001) Zbl1013.65119MR1874511DOI10.1007/978-3-7091-6217-0
- Temam, R., 10.1007/978-94-010-2565-2, D. Reidel Publishing Company, Dordrecht (1973). (1973) Zbl0261.65001MR0347099DOI10.1007/978-94-010-2565-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.