Explicit estimation of error constants appearing in non-conforming linear triangular finite element method

Xuefeng Liu; Fumio Kikuchi

Applications of Mathematics (2018)

  • Volume: 63, Issue: 4, page 381-397
  • ISSN: 0862-7940

Abstract

top
The non-conforming linear ( P 1 ) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming P 1 triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.

How to cite

top

Liu, Xuefeng, and Kikuchi, Fumio. "Explicit estimation of error constants appearing in non-conforming linear triangular finite element method." Applications of Mathematics 63.4 (2018): 381-397. <http://eudml.org/doc/294695>.

@article{Liu2018,
abstract = {The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.},
author = {Liu, Xuefeng, Kikuchi, Fumio},
journal = {Applications of Mathematics},
keywords = {FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element},
language = {eng},
number = {4},
pages = {381-397},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Explicit estimation of error constants appearing in non-conforming linear triangular finite element method},
url = {http://eudml.org/doc/294695},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Liu, Xuefeng
AU - Kikuchi, Fumio
TI - Explicit estimation of error constants appearing in non-conforming linear triangular finite element method
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 381
EP - 397
AB - The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.
LA - eng
KW - FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element
UR - http://eudml.org/doc/294695
ER -

References

top
  1. Acosta, G., Durán, R. G., 10.1137/S0036142997331293, SIAM J. Numer. Anal. 37 (1999), 18-36. (1999) Zbl0948.65115MR1721268DOI10.1137/S0036142997331293
  2. Ainsworth, M., Oden, J. T., 10.1002/9781118032824, Pure and Applied Mathematics, Wiley-Interscience, New York (2000). (2000) Zbl1008.65076MR1885308DOI10.1002/9781118032824
  3. Arnold, D. N., Brezzi, F., 10.1051/m2an/1985190100071, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. (1985) Zbl0567.65078MR0813687DOI10.1051/m2an/1985190100071
  4. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  5. Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
  6. Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation, Clarendon Press, Oxford (2001). (2001) Zbl0995.65501MR1857191
  7. Bangerth, W., Rannacher, R., 10.1007/978-3-0348-7605-6, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2003). (2003) Zbl1020.65058MR1960405DOI10.1007/978-3-0348-7605-6
  8. Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8, Texts in Applied Mathematics 15, Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8
  9. Brezzi, F., Fortin, M., 10.1007/978-1-4612-3172-1, Springer Series in Computational Mathematics 15, Springer, New York (1991). (1991) Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  10. Carstensen, C., Gedicke, J., Rim, D., 10.4208/jcm.1108-m3677, J. Comput. Math. 30 (2012), 337-353. (2012) Zbl1274.65290MR2965987DOI10.4208/jcm.1108-m3677
  11. Ciarlet, P. G., 10.1137/1.9780898719208, Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, Philadelphia (2002). (2002) Zbl0999.65129MR1930132DOI10.1137/1.9780898719208
  12. Destuynder, P., Métivet, B., 10.1090/S0025-5718-99-01093-5, Math. Comput. 68 (1999), 1379-1396. (1999) Zbl0929.65095MR1648383DOI10.1090/S0025-5718-99-01093-5
  13. Grisvard, P., 10.1137/1.9781611972030.ch1, Classics in Applied Mathematics 69, Society for Industrial and Applied Mathematics, Philadelphia (2011). (2011) Zbl1231.35002MR3396210DOI10.1137/1.9781611972030.ch1
  14. Hu, J., Ma, R., 10.1007/s10915-014-9899-9, J. Sci. Comput. 63 (2015), 410-425. (2015) Zbl1319.65111MR3328190DOI10.1007/s10915-014-9899-9
  15. Kikuchi, F., 10.2977/prims/1195191694, Publ. Res. Inst. Math. Sci., Kyoto Univ. 11 (1975), 247-265. (1975) Zbl0326.73065MR0391540DOI10.2977/prims/1195191694
  16. Kikuchi, F., Ishii, K., 10.1007/978-3-642-79654-8, S. N. Atluri, G. Yagawa, T. Cruse Computational Mechanics'95: Theory and Applications Springer, Berlin (1995), 1608-1613. (1995) DOI10.1007/978-3-642-79654-8
  17. Kikuchi, F., Liu, X., 10.1007/BF03167499, Japan J. Ind. Appl. Math. 23 (2006), 75-82. (2006) Zbl1098.65107MR2210297DOI10.1007/BF03167499
  18. Kikuchi, F., Liu, X., 10.1016/j.cma.2006.10.029, Comput. Methods Appl. Mech. Eng. 196 (2007), 3750-3758. (2007) Zbl1173.65346MR2340000DOI10.1016/j.cma.2006.10.029
  19. Kikuchi, F., Saito, H., 10.1016/j.cam.2005.07.031, J. Comput. Appl. Math. 199 (2007), 329-336. (2007) Zbl1109.65094MR2269515DOI10.1016/j.cam.2005.07.031
  20. Knabner, P., Angermann, L., 10.1007/b97419, Texts in Applied Mathematics 44, Springer, New York (2003). (2003) Zbl1034.65086MR1988268DOI10.1007/b97419
  21. Kobayashi, K., On the interpolation constants over triangular elements, Kyoto University Research Information Repository 1733 (2011), 58-77 Japanese. (2011) 
  22. Kobayashi, K., On the interpolation constants over triangular elements, Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124. (2015) Zbl1363.65014MR3700193
  23. Liu, X., Kikuchi, F., Estimation of error constants appearing in non-conforming linear triangular finite element, Procceding of APCOM’07 in conjunction with EPMESC XI, Kyoto (2007), Available at http://www.xfliu.org/p/2007LK.pdf. (2007) 
  24. Liu, X., Kikuchi, F., Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements, J. Math. Sci., Tokyo 17 (2010), 27-78. (2010) Zbl1248.65118MR2676659
  25. Marini, L. D., 10.1137/0722029, SIAM J. Numer. Anal. 22 (1985), 493-496. (1985) Zbl0573.65082MR0787572DOI10.1137/0722029
  26. Nakao, M. T., 10.1081/NFA-100105107, Numer. Funct. Anal. Optimization 22 (2001), 321-356. (2001) Zbl1106.65315MR1849323DOI10.1081/NFA-100105107
  27. Nakao, M. T., Yamamoto, N., 10.1007/978-3-7091-6217-0, Topics in Numerical Analysis. With Special Emphasis on Nonlinear Problems G. Alefeld, X. Chen Comput Suppl. 15, Springer, Wien (2001), 165-173. (2001) Zbl1013.65119MR1874511DOI10.1007/978-3-7091-6217-0
  28. Temam, R., 10.1007/978-94-010-2565-2, D. Reidel Publishing Company, Dordrecht (1973). (1973) Zbl0261.65001MR0347099DOI10.1007/978-94-010-2565-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.