Calculus on symplectic manifolds

Michael Eastwood; Jan Slovák

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 5, page 265-280
  • ISSN: 0044-8753

Abstract

top
On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.

How to cite

top

Eastwood, Michael, and Slovák, Jan. "Calculus on symplectic manifolds." Archivum Mathematicum 054.5 (2018): 265-280. <http://eudml.org/doc/294700>.

@article{Eastwood2018,
abstract = {On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.},
author = {Eastwood, Michael, Slovák, Jan},
journal = {Archivum Mathematicum},
keywords = {symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery},
language = {eng},
number = {5},
pages = {265-280},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Calculus on symplectic manifolds},
url = {http://eudml.org/doc/294700},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Eastwood, Michael
AU - Slovák, Jan
TI - Calculus on symplectic manifolds
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 5
SP - 265
EP - 280
AB - On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.
LA - eng
KW - symplectic structure; Kähler structure; tractor calculus; exact complex; BGG machinery
UR - http://eudml.org/doc/294700
ER -

References

top
  1. Bailey, T.N., Eastwood, M.G., Gover, A.R., 10.1216/rmjm/1181072333, Rocky Mountain J. Math. 24 (1994), 1191–1217. (1994) Zbl0828.53012MR1322223DOI10.1216/rmjm/1181072333
  2. Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K., Some differential complexes within and beyond parabolic geometry, arXiv:1112.2142. 
  3. Cahen, M., Schwachofer, L. J., 10.4310/jdg/1261495331, J. Differential Geom. 83 (2009), 229–271. (2009) MR2577468DOI10.4310/jdg/1261495331
  4. Čap, A., Salač, T., Parabolic conformally symplectic structures I; definition and distinguished connections, Forum Math., to appear, arXiv:1605.01161. MR3794908
  5. Čap, A., Salač, T., Parabolic conformally symplectic structures II; parabolic contactization, Ann. Mat. Pura Appl., to appear, arXiv:1605.01897. MR3829565
  6. Čap, A., Salač, T., Parabolic conformally symplectic structures III; invariant differential operators and complexes, arXiv:1701.01306. MR3829565
  7. Čap, A., Salač, T., 10.1016/j.difgeo.2014.05.004, Differential Geom. Appl. 35 (2014), 255–265, arXiv:1312.2712. (2014) MR3254307DOI10.1016/j.difgeo.2014.05.004
  8. Čap, A., Slovák, J., Parabolic Geometries I: Background and General Theory, Math. Surveys Monogr. 154 (209). (209) MR2532439
  9. Eastwood, M.G., 10.1215/ijm/1408453587, Illinois J. Math. 57 (2013), 373–381. (2013) MR3263038DOI10.1215/ijm/1408453587
  10. Eastwood, M.G., Goldschmidt, H., 10.4310/jdg/1361889063, J. Differential Geom. 94 (2013), 129–157. (2013) MR3031862DOI10.4310/jdg/1361889063
  11. Eastwood, M.G., Slovák, J., Conformally Fedosov manifolds, arXiv:1210. 5597. 
  12. Gelfand, I.M., Retakh, V.S., Shubin, M.A., 10.1006/aima.1998.1727, Adv. Math. 136 (1998), 104–140. (1998) Zbl0945.53047MR1623673DOI10.1006/aima.1998.1727
  13. Knapp, A.W., Lie Groups, Lie Algebras, and Cohomology, Princeton University Press, 1988. (1988) MR0938524
  14. Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
  15. Penrose, R., Rindler, W., Spinors and Space-time, vol. 1, Cambridge University Press, 1984. (1984) MR0776784
  16. Seshadri, N., [unknown] 
  17. Smith, R.T., 10.1090/S0002-9904-1976-14028-1, Bull. Amer. Math. Soc. (N.S.) 82 (1976), 294–299. (1976) MR0397796DOI10.1090/S0002-9904-1976-14028-1
  18. Tseng, L.-S., Yau, S.-T., 10.4310/jdg/1349292670, J. Differential Geom. 91 (2012), 383–416, 417–443. (2012) MR2981843DOI10.4310/jdg/1349292670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.