Torsion groups of a family of elliptic curves over number fields

Pallab Kanti Dey

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 161-171
  • ISSN: 0011-4642

Abstract

top
We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form E : y 2 = x 3 + c , where c is an integer.

How to cite

top

Dey, Pallab Kanti. "Torsion groups of a family of elliptic curves over number fields." Czechoslovak Mathematical Journal 69.1 (2019): 161-171. <http://eudml.org/doc/294706>.

@article{Dey2019,
abstract = {We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.},
author = {Dey, Pallab Kanti},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsion group; elliptic curve; number field},
language = {eng},
number = {1},
pages = {161-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsion groups of a family of elliptic curves over number fields},
url = {http://eudml.org/doc/294706},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Dey, Pallab Kanti
TI - Torsion groups of a family of elliptic curves over number fields
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 161
EP - 171
AB - We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
LA - eng
KW - torsion group; elliptic curve; number field
UR - http://eudml.org/doc/294706
ER -

References

top
  1. Ayoub, R., 10.1090/surv/010, Mathematical Surveys 10, American Mathematical Society, Providence (1963). (1963) Zbl0128.04303MR0160743DOI10.1090/surv/010
  2. Bourdon, A., Clark, P. L., Stankewicz, J., 10.1090/tran/6905, Trans. Am. Math. Soc. 369 (1996), 8457-8496. (1996) Zbl06790352MR3710632DOI10.1090/tran/6905
  3. Dey, P. K., 10.7169/facm/1585, Funct. Approximatio, Comment. Math. 56 (2017), 25-37. (2017) Zbl06864143MR3629008DOI10.7169/facm/1585
  4. González-Jiménez, E., 10.1016/j.jalgebra.2017.01.012, J. Algebra 478 (2017), 484-505. (2017) Zbl1369.11040MR3621686DOI10.1016/j.jalgebra.2017.01.012
  5. Jeon, D., Kim, C. H., Park, E., 10.1112/S0024610706022940, J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. (2006) Zbl1165.11054MR2254548DOI10.1112/S0024610706022940
  6. Kamienny, S., 10.1007/BF01232025, Invent. Math. 109 (1992), 221-229. (1992) Zbl0773.14016MR1172689DOI10.1007/BF01232025
  7. Kenku, M. A., Momose, F., 10.1017/S0027763000002816, Nagoya Math. J. 109 (1988), 125-149. (1988) Zbl0647.14020MR0931956DOI10.1017/S0027763000002816
  8. Knapp, A. W., Elliptic Curves, Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). (1992) Zbl0804.14013MR1193029
  9. Mazur, B., 10.1007/BF02684339, Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. (1977) Zbl0394.14008MR0488287DOI10.1007/BF02684339
  10. Najman, F., 10.1016/j.jnt.2009.12.008, J. Number Theory 130 (2010), 1964-1968. (2010) Zbl1200.11039MR2653208DOI10.1016/j.jnt.2009.12.008
  11. Najman, F., Torsion of elliptic curves over quadratic cyclotomic fields, Math. J. Okayama Univ. 53 (2011), 75-82. (2011) Zbl1222.11076MR2778886
  12. Najman, F., 10.4310/MRL.2016.v23.n1.a12, Math. Res. Lett. 23 (2016), 245-272. (2016) Zbl06609434MR3512885DOI10.4310/MRL.2016.v23.n1.a12
  13. Olson, L. D., 10.1007/BF01171442, Manuscr. Math. 14 (1974), 195-205. (1974) Zbl0292.14015MR0352104DOI10.1007/BF01171442
  14. Washington, L. C., 10.4324/9780203484029, Chapman and Hall/CRC, Boca Raton (2008). (2008) Zbl1200.11043MR2404461DOI10.4324/9780203484029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.