Torsion groups of a family of elliptic curves over number fields
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 161-171
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDey, Pallab Kanti. "Torsion groups of a family of elliptic curves over number fields." Czechoslovak Mathematical Journal 69.1 (2019): 161-171. <http://eudml.org/doc/294706>.
@article{Dey2019,
abstract = {We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.},
author = {Dey, Pallab Kanti},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsion group; elliptic curve; number field},
language = {eng},
number = {1},
pages = {161-171},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsion groups of a family of elliptic curves over number fields},
url = {http://eudml.org/doc/294706},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Dey, Pallab Kanti
TI - Torsion groups of a family of elliptic curves over number fields
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 161
EP - 171
AB - We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
LA - eng
KW - torsion group; elliptic curve; number field
UR - http://eudml.org/doc/294706
ER -
References
top- Ayoub, R., 10.1090/surv/010, Mathematical Surveys 10, American Mathematical Society, Providence (1963). (1963) Zbl0128.04303MR0160743DOI10.1090/surv/010
- Bourdon, A., Clark, P. L., Stankewicz, J., 10.1090/tran/6905, Trans. Am. Math. Soc. 369 (1996), 8457-8496. (1996) Zbl06790352MR3710632DOI10.1090/tran/6905
- Dey, P. K., 10.7169/facm/1585, Funct. Approximatio, Comment. Math. 56 (2017), 25-37. (2017) Zbl06864143MR3629008DOI10.7169/facm/1585
- González-Jiménez, E., 10.1016/j.jalgebra.2017.01.012, J. Algebra 478 (2017), 484-505. (2017) Zbl1369.11040MR3621686DOI10.1016/j.jalgebra.2017.01.012
- Jeon, D., Kim, C. H., Park, E., 10.1112/S0024610706022940, J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. (2006) Zbl1165.11054MR2254548DOI10.1112/S0024610706022940
- Kamienny, S., 10.1007/BF01232025, Invent. Math. 109 (1992), 221-229. (1992) Zbl0773.14016MR1172689DOI10.1007/BF01232025
- Kenku, M. A., Momose, F., 10.1017/S0027763000002816, Nagoya Math. J. 109 (1988), 125-149. (1988) Zbl0647.14020MR0931956DOI10.1017/S0027763000002816
- Knapp, A. W., Elliptic Curves, Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). (1992) Zbl0804.14013MR1193029
- Mazur, B., 10.1007/BF02684339, Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. (1977) Zbl0394.14008MR0488287DOI10.1007/BF02684339
- Najman, F., 10.1016/j.jnt.2009.12.008, J. Number Theory 130 (2010), 1964-1968. (2010) Zbl1200.11039MR2653208DOI10.1016/j.jnt.2009.12.008
- Najman, F., Torsion of elliptic curves over quadratic cyclotomic fields, Math. J. Okayama Univ. 53 (2011), 75-82. (2011) Zbl1222.11076MR2778886
- Najman, F., 10.4310/MRL.2016.v23.n1.a12, Math. Res. Lett. 23 (2016), 245-272. (2016) Zbl06609434MR3512885DOI10.4310/MRL.2016.v23.n1.a12
- Olson, L. D., 10.1007/BF01171442, Manuscr. Math. 14 (1974), 195-205. (1974) Zbl0292.14015MR0352104DOI10.1007/BF01171442
- Washington, L. C., 10.4324/9780203484029, Chapman and Hall/CRC, Boca Raton (2008). (2008) Zbl1200.11043MR2404461DOI10.4324/9780203484029
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.