The torsion subgroup of a family of elliptic curves over the maximal abelian extension of
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 979-995
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDimabayao, Jerome Tomagan. "The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$." Czechoslovak Mathematical Journal 70.4 (2020): 979-995. <http://eudml.org/doc/297410>.
@article{Dimabayao2020,
abstract = {We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb \{Q\}$ and over the maximal $p$-cyclotomic extensions of $\mathbb \{Q\}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.},
author = {Dimabayao, Jerome Tomagan},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsion group; elliptic curve; cyclotomic field},
language = {eng},
number = {4},
pages = {979-995},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb \{Q\}$},
url = {http://eudml.org/doc/297410},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Dimabayao, Jerome Tomagan
TI - The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 979
EP - 995
AB - We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
LA - eng
KW - torsion group; elliptic curve; cyclotomic field
UR - http://eudml.org/doc/297410
ER -
References
top- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Bourdon, A., Clark, P. L., 10.2140/pjm.2020.305.43, Pac. J. Math. 305 (2020), 43-88. (2020) Zbl07180891MR4077686DOI10.2140/pjm.2020.305.43
- Daniels, H. B., Lozano-Robledo, Á., Najman, F., Sutherland, A. V., 10.1090/mcom/3213, Math. Comput. 87 (2018), 425-458. (2018) Zbl1422.11132MR3716201DOI10.1090/mcom/3213
- Dey, P. K., 10.7169/facm/1585, Funct. Approximatio Comment. Math. 56 (2017), 25-37. (2017) Zbl1390.14089MR3629008DOI10.7169/facm/1585
- Dey, P. K., 10.21136/CMJ.2018.0214-17, Czech. Math. J. 69 (2019), 161-171. (2019) Zbl07088776MR3923581DOI10.21136/CMJ.2018.0214-17
- Frey, G., Jarden, M., 10.1112/plms/s3-28.1.112, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 112-128. (1974) Zbl0275.14021MR0337997DOI10.1112/plms/s3-28.1.112
- Fujita, Y., 10.4064/aa115-1-3, Acta Arith. 115 (2004), 29-45. (2004) Zbl1114.11052MR2102804DOI10.4064/aa115-1-3
- Fujita, Y., 10.1016/j.jnt.2005.03.005, J. Number Theory 114 (2005), 124-134. (2005) Zbl1087.11038MR2163908DOI10.1016/j.jnt.2005.03.005
- Gal, I., Grizzard, R., 10.5802/jtnb.884, J. Th{é}or. Nombres Bordx. 26 (2014), 655-672. (2014) Zbl1360.11112MR3320497DOI10.5802/jtnb.884
- González-Jiménez, E., 10.1016/j.jalgebra.2017.01.012, J. Algebra 478 (2017), 484-505. (2017) Zbl1369.11040MR3621686DOI10.1016/j.jalgebra.2017.01.012
- González-Jiménez, E., Lozano-Robledo, Á., 10.1090/mcom/3235, Math. Comput. 87 (2018), 1457-1478. (2018) Zbl1397.11092MR3766394DOI10.1090/mcom/3235
- Kamienny, S., 10.1007/BF01232025, Invent. Math. 109 (1992), 221-229. (1992) Zbl0773.14016MR1172689DOI10.1007/BF01232025
- Katz, N. M., Lang, S., 10.5169/seals-51754, Enseign. Math., II. Sér. Appendix by K. Ribet: Torsion points on abelian varieties in cyclotomic extensions 27 1981 285-319. Zbl0495.14011MR0659153DOI10.5169/seals-51754
- Kenku, M. A., Momose, F., 10.1017/S0027763000002816, Nagoya Math. J. 109 (1988), 125-149. (1988) Zbl0647.14020MR0931956DOI10.1017/S0027763000002816
- Laska, M., Lorenz, M., 10.1515/crll.1985.355.163, J. Reine Angew. Math. 355 (1985), 163-172. (1985) Zbl0586.14013MR0772489DOI10.1515/crll.1985.355.163
- Marcus, D. A., 10.1007/978-3-319-90233-3, Universitext, Springer, New York (1977). (1977) Zbl0383.12001MR0457396DOI10.1007/978-3-319-90233-3
- Mazur, B., 10.1007/BF02684339, Publ. Math., Inst. Hautes Étud. Sci. 47 (1978), 33-186. (1978) Zbl0394.14008MR0488287DOI10.1007/BF02684339
- Najman, F., 10.4310/MRL.2016.v23.n1.a12, Math. Res. Lett. 23 (2016), 245-272. (2016) Zbl1416.11084MR3512885DOI10.4310/MRL.2016.v23.n1.a12
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.