The torsion subgroup of a family of elliptic curves over the maximal abelian extension of

Jerome Tomagan Dimabayao

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 979-995
  • ISSN: 0011-4642

Abstract

top
We determine explicitly the structure of the torsion group over the maximal abelian extension of and over the maximal p -cyclotomic extensions of for the family of rational elliptic curves given by y 2 = x 3 + B , where B is an integer.

How to cite

top

Dimabayao, Jerome Tomagan. "The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$." Czechoslovak Mathematical Journal 70.4 (2020): 979-995. <http://eudml.org/doc/297410>.

@article{Dimabayao2020,
abstract = {We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb \{Q\}$ and over the maximal $p$-cyclotomic extensions of $\mathbb \{Q\}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.},
author = {Dimabayao, Jerome Tomagan},
journal = {Czechoslovak Mathematical Journal},
keywords = {torsion group; elliptic curve; cyclotomic field},
language = {eng},
number = {4},
pages = {979-995},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb \{Q\}$},
url = {http://eudml.org/doc/297410},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Dimabayao, Jerome Tomagan
TI - The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 979
EP - 995
AB - We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
LA - eng
KW - torsion group; elliptic curve; cyclotomic field
UR - http://eudml.org/doc/297410
ER -

References

top
  1. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  2. Bourdon, A., Clark, P. L., 10.2140/pjm.2020.305.43, Pac. J. Math. 305 (2020), 43-88. (2020) Zbl07180891MR4077686DOI10.2140/pjm.2020.305.43
  3. Daniels, H. B., Lozano-Robledo, Á., Najman, F., Sutherland, A. V., 10.1090/mcom/3213, Math. Comput. 87 (2018), 425-458. (2018) Zbl1422.11132MR3716201DOI10.1090/mcom/3213
  4. Dey, P. K., 10.7169/facm/1585, Funct. Approximatio Comment. Math. 56 (2017), 25-37. (2017) Zbl1390.14089MR3629008DOI10.7169/facm/1585
  5. Dey, P. K., 10.21136/CMJ.2018.0214-17, Czech. Math. J. 69 (2019), 161-171. (2019) Zbl07088776MR3923581DOI10.21136/CMJ.2018.0214-17
  6. Frey, G., Jarden, M., 10.1112/plms/s3-28.1.112, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 112-128. (1974) Zbl0275.14021MR0337997DOI10.1112/plms/s3-28.1.112
  7. Fujita, Y., 10.4064/aa115-1-3, Acta Arith. 115 (2004), 29-45. (2004) Zbl1114.11052MR2102804DOI10.4064/aa115-1-3
  8. Fujita, Y., 10.1016/j.jnt.2005.03.005, J. Number Theory 114 (2005), 124-134. (2005) Zbl1087.11038MR2163908DOI10.1016/j.jnt.2005.03.005
  9. Gal, I., Grizzard, R., 10.5802/jtnb.884, J. Th{é}or. Nombres Bordx. 26 (2014), 655-672. (2014) Zbl1360.11112MR3320497DOI10.5802/jtnb.884
  10. González-Jiménez, E., 10.1016/j.jalgebra.2017.01.012, J. Algebra 478 (2017), 484-505. (2017) Zbl1369.11040MR3621686DOI10.1016/j.jalgebra.2017.01.012
  11. González-Jiménez, E., Lozano-Robledo, Á., 10.1090/mcom/3235, Math. Comput. 87 (2018), 1457-1478. (2018) Zbl1397.11092MR3766394DOI10.1090/mcom/3235
  12. Kamienny, S., 10.1007/BF01232025, Invent. Math. 109 (1992), 221-229. (1992) Zbl0773.14016MR1172689DOI10.1007/BF01232025
  13. Katz, N. M., Lang, S., 10.5169/seals-51754, Enseign. Math., II. Sér. Appendix by K. Ribet: Torsion points on abelian varieties in cyclotomic extensions 27 1981 285-319. Zbl0495.14011MR0659153DOI10.5169/seals-51754
  14. Kenku, M. A., Momose, F., 10.1017/S0027763000002816, Nagoya Math. J. 109 (1988), 125-149. (1988) Zbl0647.14020MR0931956DOI10.1017/S0027763000002816
  15. Laska, M., Lorenz, M., 10.1515/crll.1985.355.163, J. Reine Angew. Math. 355 (1985), 163-172. (1985) Zbl0586.14013MR0772489DOI10.1515/crll.1985.355.163
  16. Marcus, D. A., 10.1007/978-3-319-90233-3, Universitext, Springer, New York (1977). (1977) Zbl0383.12001MR0457396DOI10.1007/978-3-319-90233-3
  17. Mazur, B., 10.1007/BF02684339, Publ. Math., Inst. Hautes Étud. Sci. 47 (1978), 33-186. (1978) Zbl0394.14008MR0488287DOI10.1007/BF02684339
  18. Najman, F., 10.4310/MRL.2016.v23.n1.a12, Math. Res. Lett. 23 (2016), 245-272. (2016) Zbl1416.11084MR3512885DOI10.4310/MRL.2016.v23.n1.a12

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.