Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces

Gladis Pradolini; Jorgelina Recchi

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 77-94
  • ISSN: 0011-4642

Abstract

top
Let μ be a nonnegative Borel measure on d satisfying that μ ( Q ) l ( Q ) n for every cube Q n , where l ( Q ) is the side length of the cube Q and 0 < n d . We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ . Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).

How to cite

top

Pradolini, Gladis, and Recchi, Jorgelina. "Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces." Czechoslovak Mathematical Journal 68.1 (2018): 77-94. <http://eudml.org/doc/294727>.

@article{Pradolini2018,
abstract = {Let $\mu $ be a nonnegative Borel measure on $\mathbb \{R\}^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb \{R\}^n$, where $l(Q)$ is the side length of the cube $Q$ and $0<n\le d$. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).},
author = {Pradolini, Gladis, Recchi, Jorgelina},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-homogeneous space; generalized fractional operator; weight},
language = {eng},
number = {1},
pages = {77-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces},
url = {http://eudml.org/doc/294727},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Pradolini, Gladis
AU - Recchi, Jorgelina
TI - Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 77
EP - 94
AB - Let $\mu $ be a nonnegative Borel measure on $\mathbb {R}^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb {R}^n$, where $l(Q)$ is the side length of the cube $Q$ and $0<n\le d$. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).
LA - eng
KW - non-homogeneous space; generalized fractional operator; weight
UR - http://eudml.org/doc/294727
ER -

References

top
  1. Bernardis, A., Dalmasso, E., Pradolini, G., 10.5186/aasfm.2014.3904, Ann. Acad. Sci. Fenn., Math. 39 (2014), 23-50. (2014) Zbl1297.42029MR3186804DOI10.5186/aasfm.2014.3904
  2. Bernardis, A., Hartzstein, S., Pradolini, G., 10.1016/j.jmaa.2005.09.051, J. Math. Anal. Appl. 322 (2006), 825-846. (2006) Zbl1129.42395MR2250620DOI10.1016/j.jmaa.2005.09.051
  3. Bernardis, A. L., Lorente, M., Riveros, M. S., 10.7153/mia-14-73, Math. Inequal. Appl. 14 (2011), 881-895. (2011) Zbl1245.42009MR2884902DOI10.7153/mia-14-73
  4. Bernardis, A. L., Pradolini, G., Lorente, M., Riveros, M. S., 10.1007/s10114-010-8445-4, Acta Math. Sin., Engl. Ser. 26 (2010), 1509-1518. (2010) Zbl1202.42035MR2661130DOI10.1007/s10114-010-8445-4
  5. Cruz-Uribe, D., Fiorenza, A., The A property for Young functions and weighted norm inequalities, Houston J. Math. 28 (2002), 169-182. (2002) Zbl1041.42009MR1876947
  6. Cruz-Uribe, D., Fiorenza, A., 10.5565/PUBLMAT_47103_05, Publ. Mat., Barc. 47 (2003), 103-131. (2003) Zbl1035.42015MR1970896DOI10.5565/PUBLMAT_47103_05
  7. Cruz-Uribe, D., Pérez, C., On the two-weight problem for singular integral operators, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821-849. (2002) Zbl1072.42010MR1991004
  8. García-Cuerva, J., Martell, J. M., 10.1512/iumj.2001.50.2100, Indiana Univ. Math. J. 50 (2001), 1241-1280. (2001) Zbl1023.42012MR1871355DOI10.1512/iumj.2001.50.2100
  9. Gorosito, O., Pradolini, G., Salinas, O., 10.1007/s10114-005-0741-z, Acta Math. Sin., Engl. Ser. 23 (2007), 1813-1826. (2007) Zbl1134.42319MR2352296DOI10.1007/s10114-005-0741-z
  10. Gorosito, O., Pradolini, G., Salinas, O., Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof, Rev. Unión Mat. Argent. 53 (2012), 25-27. (2012) Zbl1256.42030MR2987152
  11. Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). (1988) Zbl0634.26008MR0944909
  12. Lorente, M., Martell, J. M., Riveros, M. S., Torre, A. de la, 10.1016/j.jmaa.2008.01.003, J. Math. Anal. Appl. 342 (2008), 1399-1425. (2008) Zbl1141.42013MR2445285DOI10.1016/j.jmaa.2008.01.003
  13. Lorente, M., Riveros, M. S., Torre, A. de la, 10.1007/s00041-005-4039-4, J. Fourier Anal. Appl. 11 (2005), 497-509. (2005) Zbl1096.42006MR2182632DOI10.1007/s00041-005-4039-4
  14. Mateu, J., Mattila, P., Nicolau, A., Orobitg, J., 10.1215/S0012-7094-00-10238-4, Duke Math. J. 102 (2000), 533-565. (2000) Zbl0964.42009MR1756109DOI10.1215/S0012-7094-00-10238-4
  15. Meng, Y., Yang, D., 10.11650/twjm/1500404567, Taiwanese J. Math. 10 (2006), 1443-1464. (2006) Zbl1131.47034MR2275138DOI10.11650/twjm/1500404567
  16. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792897000469, Int. Math. Res. Not. 1997 (1997), 703-726. (1997) Zbl0889.42013MR1470373DOI10.1155/S1073792897000469
  17. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792898000312, Int. Math. Res. Not. 1998 (1998), 463-487. (1998) Zbl0918.42009MR1626935DOI10.1155/S1073792898000312
  18. Pérez, C., 10.1512/iumj.1994.43.43028, Indiana Univ. Math. J. 43 (1994), 663-683. (1994) Zbl0809.42007MR1291534DOI10.1512/iumj.1994.43.43028
  19. Pérez, C., 10.1112/jlms/49.2.296, J. Lond. Math. Soc., II. Ser. 49 (1994), 296-308. (1994) Zbl0797.42010MR1260114DOI10.1112/jlms/49.2.296
  20. Pérez, C., 10.1006/jfan.1995.1027, J. Funct. Anal. 128 (1995), 163-185. (1995) Zbl0831.42010MR1317714DOI10.1006/jfan.1995.1027
  21. Pérez, C., 10.1112/plms/s3-71.1.135, Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135-157. (1995) Zbl0829.42019MR1327936DOI10.1112/plms/s3-71.1.135
  22. Pérez, C., 10.1007/BF02648265, J. Fourier Anal. Appl. 3 (1997), 743-756. (1997) Zbl0894.42006MR1481632DOI10.1007/BF02648265
  23. Pérez, C., Pradolini, G., 10.1307/mmj/1008719033, Mich. Math. J. 49 (2001), 23-37. (2001) Zbl1010.42007MR1827073DOI10.1307/mmj/1008719033
  24. Pradolini, G., 10.1016/j.jmaa.2010.02.008, J. Math. Anal. Appl. 367 (2010), 640-656. (2010) Zbl1198.42011MR2607287DOI10.1016/j.jmaa.2010.02.008
  25. Pradolini, G., Salinas, O., 10.1090/S0002-9939-03-07079-5, Proc. Am. Math. Soc. 132 (2004), 435-441. (2004) Zbl1044.42021MR2022366DOI10.1090/S0002-9939-03-07079-5
  26. Tolsa, X., 10.1007/s002080000144, Math. Ann. 319 (2001), 89-149. (2001) Zbl0974.42014MR1812821DOI10.1007/s002080000144
  27. Yang, D., Yang, D., Hu, G., 10.1007/978-3-319-00825-7, Lecture Notes in Mathematics 2084, Springer, Cham (2013). (2013) Zbl1316.42002MR3157341DOI10.1007/978-3-319-00825-7
  28. Wang, W., Tan, C., Lou, Z., 10.11650/twjm/1500406741, Taiwanese J. Math. 16 (2012), 1409-1422. (2012) Zbl1266.42050MR2951145DOI10.11650/twjm/1500406741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.