Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
Gladis Pradolini; Jorgelina Recchi
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 77-94
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPradolini, Gladis, and Recchi, Jorgelina. "Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces." Czechoslovak Mathematical Journal 68.1 (2018): 77-94. <http://eudml.org/doc/294727>.
@article{Pradolini2018,
abstract = {Let $\mu $ be a nonnegative Borel measure on $\mathbb \{R\}^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb \{R\}^n$, where $l(Q)$ is the side length of the cube $Q$ and $0<n\le d$. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).},
author = {Pradolini, Gladis, Recchi, Jorgelina},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-homogeneous space; generalized fractional operator; weight},
language = {eng},
number = {1},
pages = {77-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces},
url = {http://eudml.org/doc/294727},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Pradolini, Gladis
AU - Recchi, Jorgelina
TI - Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 77
EP - 94
AB - Let $\mu $ be a nonnegative Borel measure on $\mathbb {R}^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb {R}^n$, where $l(Q)$ is the side length of the cube $Q$ and $0<n\le d$. We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).
LA - eng
KW - non-homogeneous space; generalized fractional operator; weight
UR - http://eudml.org/doc/294727
ER -
References
top- Bernardis, A., Dalmasso, E., Pradolini, G., 10.5186/aasfm.2014.3904, Ann. Acad. Sci. Fenn., Math. 39 (2014), 23-50. (2014) Zbl1297.42029MR3186804DOI10.5186/aasfm.2014.3904
- Bernardis, A., Hartzstein, S., Pradolini, G., 10.1016/j.jmaa.2005.09.051, J. Math. Anal. Appl. 322 (2006), 825-846. (2006) Zbl1129.42395MR2250620DOI10.1016/j.jmaa.2005.09.051
- Bernardis, A. L., Lorente, M., Riveros, M. S., 10.7153/mia-14-73, Math. Inequal. Appl. 14 (2011), 881-895. (2011) Zbl1245.42009MR2884902DOI10.7153/mia-14-73
- Bernardis, A. L., Pradolini, G., Lorente, M., Riveros, M. S., 10.1007/s10114-010-8445-4, Acta Math. Sin., Engl. Ser. 26 (2010), 1509-1518. (2010) Zbl1202.42035MR2661130DOI10.1007/s10114-010-8445-4
- Cruz-Uribe, D., Fiorenza, A., The property for Young functions and weighted norm inequalities, Houston J. Math. 28 (2002), 169-182. (2002) Zbl1041.42009MR1876947
- Cruz-Uribe, D., Fiorenza, A., 10.5565/PUBLMAT_47103_05, Publ. Mat., Barc. 47 (2003), 103-131. (2003) Zbl1035.42015MR1970896DOI10.5565/PUBLMAT_47103_05
- Cruz-Uribe, D., Pérez, C., On the two-weight problem for singular integral operators, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821-849. (2002) Zbl1072.42010MR1991004
- García-Cuerva, J., Martell, J. M., 10.1512/iumj.2001.50.2100, Indiana Univ. Math. J. 50 (2001), 1241-1280. (2001) Zbl1023.42012MR1871355DOI10.1512/iumj.2001.50.2100
- Gorosito, O., Pradolini, G., Salinas, O., 10.1007/s10114-005-0741-z, Acta Math. Sin., Engl. Ser. 23 (2007), 1813-1826. (2007) Zbl1134.42319MR2352296DOI10.1007/s10114-005-0741-z
- Gorosito, O., Pradolini, G., Salinas, O., Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof, Rev. Unión Mat. Argent. 53 (2012), 25-27. (2012) Zbl1256.42030MR2987152
- Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). (1988) Zbl0634.26008MR0944909
- Lorente, M., Martell, J. M., Riveros, M. S., Torre, A. de la, 10.1016/j.jmaa.2008.01.003, J. Math. Anal. Appl. 342 (2008), 1399-1425. (2008) Zbl1141.42013MR2445285DOI10.1016/j.jmaa.2008.01.003
- Lorente, M., Riveros, M. S., Torre, A. de la, 10.1007/s00041-005-4039-4, J. Fourier Anal. Appl. 11 (2005), 497-509. (2005) Zbl1096.42006MR2182632DOI10.1007/s00041-005-4039-4
- Mateu, J., Mattila, P., Nicolau, A., Orobitg, J., 10.1215/S0012-7094-00-10238-4, Duke Math. J. 102 (2000), 533-565. (2000) Zbl0964.42009MR1756109DOI10.1215/S0012-7094-00-10238-4
- Meng, Y., Yang, D., 10.11650/twjm/1500404567, Taiwanese J. Math. 10 (2006), 1443-1464. (2006) Zbl1131.47034MR2275138DOI10.11650/twjm/1500404567
- Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792897000469, Int. Math. Res. Not. 1997 (1997), 703-726. (1997) Zbl0889.42013MR1470373DOI10.1155/S1073792897000469
- Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792898000312, Int. Math. Res. Not. 1998 (1998), 463-487. (1998) Zbl0918.42009MR1626935DOI10.1155/S1073792898000312
- Pérez, C., 10.1512/iumj.1994.43.43028, Indiana Univ. Math. J. 43 (1994), 663-683. (1994) Zbl0809.42007MR1291534DOI10.1512/iumj.1994.43.43028
- Pérez, C., 10.1112/jlms/49.2.296, J. Lond. Math. Soc., II. Ser. 49 (1994), 296-308. (1994) Zbl0797.42010MR1260114DOI10.1112/jlms/49.2.296
- Pérez, C., 10.1006/jfan.1995.1027, J. Funct. Anal. 128 (1995), 163-185. (1995) Zbl0831.42010MR1317714DOI10.1006/jfan.1995.1027
- Pérez, C., 10.1112/plms/s3-71.1.135, Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135-157. (1995) Zbl0829.42019MR1327936DOI10.1112/plms/s3-71.1.135
- Pérez, C., 10.1007/BF02648265, J. Fourier Anal. Appl. 3 (1997), 743-756. (1997) Zbl0894.42006MR1481632DOI10.1007/BF02648265
- Pérez, C., Pradolini, G., 10.1307/mmj/1008719033, Mich. Math. J. 49 (2001), 23-37. (2001) Zbl1010.42007MR1827073DOI10.1307/mmj/1008719033
- Pradolini, G., 10.1016/j.jmaa.2010.02.008, J. Math. Anal. Appl. 367 (2010), 640-656. (2010) Zbl1198.42011MR2607287DOI10.1016/j.jmaa.2010.02.008
- Pradolini, G., Salinas, O., 10.1090/S0002-9939-03-07079-5, Proc. Am. Math. Soc. 132 (2004), 435-441. (2004) Zbl1044.42021MR2022366DOI10.1090/S0002-9939-03-07079-5
- Tolsa, X., 10.1007/s002080000144, Math. Ann. 319 (2001), 89-149. (2001) Zbl0974.42014MR1812821DOI10.1007/s002080000144
- Yang, D., Yang, D., Hu, G., 10.1007/978-3-319-00825-7, Lecture Notes in Mathematics 2084, Springer, Cham (2013). (2013) Zbl1316.42002MR3157341DOI10.1007/978-3-319-00825-7
- Wang, W., Tan, C., Lou, Z., 10.11650/twjm/1500406741, Taiwanese J. Math. 16 (2012), 1409-1422. (2012) Zbl1266.42050MR2951145DOI10.11650/twjm/1500406741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.