On the two-weight problem for singular integral operators

David Cruz-Uribe; Carlos Pérez

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 821-849
  • ISSN: 0391-173X

Abstract

top
We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].

How to cite

top

Cruz-Uribe, David, and Pérez, Carlos. "On the two-weight problem for singular integral operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 821-849. <http://eudml.org/doc/84488>.

@article{Cruz2002,
abstract = {We give $A_p$ type conditions which are sufficient for two-weight, strong $(p,p)$ inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function $g^*_\lambda $. Our results extend earlier work on weak $(p,p)$ inequalities in [13].},
author = {Cruz-Uribe, David, Pérez, Carlos},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {maximal operator; singular integral; Calderón-Zygmund operator; Littlewood-Paley square function; commutator; Orlicz bump; two-weight case},
language = {eng},
number = {4},
pages = {821-849},
publisher = {Scuola normale superiore},
title = {On the two-weight problem for singular integral operators},
url = {http://eudml.org/doc/84488},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Cruz-Uribe, David
AU - Pérez, Carlos
TI - On the two-weight problem for singular integral operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 821
EP - 849
AB - We give $A_p$ type conditions which are sufficient for two-weight, strong $(p,p)$ inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function $g^*_\lambda $. Our results extend earlier work on weak $(p,p)$ inequalities in [13].
LA - eng
KW - maximal operator; singular integral; Calderón-Zygmund operator; Littlewood-Paley square function; commutator; Orlicz bump; two-weight case
UR - http://eudml.org/doc/84488
ER -

References

top
  1. [1] D. Cruz-Uribe, SFO – A. Fiorenza, The A property for Young functions and weighted norm inequalities, Houston J. Math., to appear. Zbl1041.42009MR1876947
  2. [2] D. Cruz-Uribe, SFO – C. Pérez, Sharp two-weight, weak-type norm inequalities for singular integral operators, Math. Res. Let. 6 (1999), 417-428. Zbl0961.42013MR1713140
  3. [3] D. Cruz-Uribe, SFO – C. Pérez, Two-weight, weak-type norm inequalities for fractional integrals, Calderón-Zygmund operators and commutators, Indiana Math. J. 49 (2000), 697-721. Zbl1033.42009MR1793688
  4. [4] Duoandikoetxea, J., “Fourier Analysis”, Grad. Studies Math. 29, Amer. Math. Soc., Providence, 2000. Zbl0969.42001MR1800316
  5. [5] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. Zbl0188.42601MR257819
  6. [6] N. Fujii, A condition for a two-weight norm inequality for singular integral operators, Studia Math. 98 (1991), 175-190. Zbl0732.42012MR1115188
  7. [7] J. García-Cuerva – E. Harboure – C. Segovia – J. L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J. 40 (1991), 1398-1420. Zbl0765.42012MR1142721
  8. [8] J. García-Cuerva – J. L. Rubio de Francia, “Weighted Norm Inequalities and Related Topics”, North Holland Math. Studies 116, North Holland, Amsterdam, 1985. Zbl0578.46046MR848136
  9. [9] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. Pure Math. 10 (1967), 138-183. Zbl0167.09603MR383152
  10. [10] S. Janson, Mean oscillation and commutators of singular integrals, Ark. Mat. 16 (1978), 263-270. Zbl0404.42013MR524754
  11. [11] J.-L. Journé, “Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón”, Lecture Notes in Mathematics, 994, Springer Verlag, Berlin, 1983. Zbl0508.42021
  12. [12] N. H. Katz – C. Pereyra, On the two weights problem for the Hilbert transform, Rev. Mat. Iberoamericana 13 (1997), 189-210. Zbl0908.49029MR1462332
  13. [13] M. A. Leckband, Structure results on the maximal Hilbert transform and two-weight norm inequalities, Indiana Math. J. 34 (1985), 259-275. Zbl0586.42010MR783915
  14. [14] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016MR293384
  15. [15] B. Muckenhoupt – R. L. Wheeden, Norm inequalities for Littlewood-Paley function g λ * , Trans. Amer. Math. Soc. 191 (1974), 95-111. Zbl0289.44005MR387973
  16. [16] B. Muckenhoupt – R. Wheeden, Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 60 (1976), 279-294. Zbl0336.44006MR417671
  17. [17] C. J. Neugebauer, Inserting A p -weights, Proc. Amer. Math. Soc. 87 (1983), 644-648. Zbl0521.42019MR687633
  18. [18] R. O’Neil, Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1965), 300-328. Zbl0132.09201MR194881
  19. [19] C. Pérez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Math. J. 43 (1994), 663-683. Zbl0809.42007MR1291534
  20. [20] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L p -spaces with different weights, Proc. London Math. Soc. 71 (1995), 135-57. Zbl0829.42019MR1327936
  21. [21] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185. Zbl0831.42010MR1317714
  22. [22] C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (6) (1997), 743-756. Zbl0894.42006MR1481632
  23. [23] C. Pérez – G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J. 49 (2001), 23-37. Zbl1010.42007MR1827073
  24. [24] C. Pérez – R. Wheeden, Uncertainty principle estimates for vector fields, J. Func. Anal. 181 (2001), 146-188. Zbl0982.42010MR1818113
  25. [25] D. H. Phong – E. M. Stein, Hilbert integrals, singular integrals and Radon transforms, Acta Math. 157 (1985), 99-157. Zbl0622.42011MR857680
  26. [26] M. M. Rao – Z. D. Ren, “Theory of Orlicz Spaces”, Marcel Dekker, New York, 1991. Zbl0724.46032MR1113700
  27. [27] Y. Rakotondratsimba, Two weight norm inequality for Calderón-Zygmund operators, Acta Math. Hungar. 80 (1998), 39-54. Zbl0914.47007MR1624522
  28. [28] Y. Rakotondratsimba, Two-weight inequality for commutators of singular integral operators, Kobe J. Math. 16 (1999), 1-20. Zbl0940.42011MR1723543
  29. [29] J. L. Rubio de Francia – F. J. Ruiz – J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62, (1986), 7-48. Zbl0627.42008MR859252
  30. [30] E. T. Sawyer, A characterization of a two weight norm weight inequality for maximal operators, Studia Math. 75 (1982), 1-11. Zbl0508.42023MR676801
  31. [31] C. Segovia – J. L. Torrea, Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537-556. Zbl0799.42009MR1074151
  32. [32] E. M. Stein, Note on the class L logL, Studia Math. 32 (1969), 305-310. Zbl0182.47803MR247534
  33. [33] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions”, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  34. [34] J.-O. Strömberg – A. Torchinsky, “Weighted Hardy Spaces”, Lecture Notes in Mathematics, 1381, Springer Verlag, Berlin, 1989. Zbl0676.42021MR1011673
  35. [35] A. Torchinsky, “Real-Variable Methods in Harmonic Analysis”, Academic Press, New York, 1986. Zbl0621.42001MR869816
  36. [36] S. Treil – A. Volberg – D. Zheng, Hilbert Transform, Toeplitz operators and Hankel operators, and invariant A weights, Rev. Mat. Iberoamericana 13 (1997), 319-360. Zbl0896.42009MR1617653
  37. [37] G. Weiss, A note on Orlicz spaces, Portugal. Math. 15 (1950), 35-47. Zbl0071.33001MR82645
  38. [38] J. M. Wilson, Weighted norm inequalities for the continuous square functions, Trans. Amer. Math. Soc. 314 (1989), 661-692. Zbl0689.42016MR972707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.