Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions
Ioannis K. Argyros; Santhosh George
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 2, page 219-229
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArgyros, Ioannis K., and George, Santhosh. "Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 219-229. <http://eudml.org/doc/294731>.
@article{Argyros2019,
abstract = {A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.},
author = {Argyros, Ioannis K., George, Santhosh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Newton-Jarratt's method; radius of convergence; local convergence; decomposition techniques; restricted convergence domain},
language = {eng},
number = {2},
pages = {219-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions},
url = {http://eudml.org/doc/294731},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Argyros, Ioannis K.
AU - George, Santhosh
TI - Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 219
EP - 229
AB - A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.
LA - eng
KW - Newton-Jarratt's method; radius of convergence; local convergence; decomposition techniques; restricted convergence domain
UR - http://eudml.org/doc/294731
ER -
References
top- Amat S., Busquier S., Negra M., 10.1081/NFA-200042628, Numer. Funct. Anal. Optim. 25 (2004), no. 5–6, 397–405. Zbl1071.65077MR2106266DOI10.1081/NFA-200042628
- Argyros I. K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, Elsevier, Amsterdam, 2007. Zbl1147.65313MR2356038
- Argyros I. K., Cho Y. J., George S., 10.4134/JKMS.j150244, J. Korean Math. Soc. 53 (2016), no. 4, 781–793. MR3521238DOI10.4134/JKMS.j150244
- Argyros I. K., George S., 10.1007/s10092-015-0163-y, Calcolo 53 (2016), no. 4, 585–595. MR3574604DOI10.1007/s10092-015-0163-y
- Argyros I. K., Magreñán Á. A., Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems, Appl. Math. Comput. 241 (2014), 401–408. MR3223438
- Argyros I. K., Szidarovszky F., The Theory and Applications of Iteration Methods, Systems Engineering Series, CRC Press, Boca Raton, 1993. MR1272012
- Cordero A., Hueso J., Martinez E., Torregrosa J. R., 10.1007/s11075-009-9359-z, Numer. Algorithms 55 (2010), no. 1, 87–99. MR2679752DOI10.1007/s11075-009-9359-z
- Cordero A., Torregrosa J. R., Variants of Newton's method for functions of several variables, Appl. Math. Comput. 183 (2006), no. 1, 199–208. MR2282802
- Cordero A., Torregrosa J. R., Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput. 190 (2007), no. 1, 686–698. MR2338747
- Ezquerro J. A., Hernández M. A., Romero A. N., Approximacion de soluciones de algunas equacuaciones integrals de Hammerstein mediante metodos iterativos tipo, Newton, XXI Congresode ecuaciones diferenciales y aplicaciones Universidad de Castilla-La Mancha, Ciudad Real, 2009, 8 pages.
- Grau-Sánchez M., Grau À., Noguera M., 10.1016/j.cam.2011.08.008, J. Comput. Appl. Math. 236 (2011), no. 6, 1259–1266. MR2854048DOI10.1016/j.cam.2011.08.008
- Gutiérrez J. M., Hernández M. A., 10.1093/imanum/20.4.521, IMA J. Numer. Anal. 20 (2000), no. 4, 521–532. MR1795296DOI10.1093/imanum/20.4.521
- Homeier H. H. H., 10.1016/j.cam.2003.12.041, J. Comput. Appl. Math. 169 (2004), no. 1, 161–169. MR2071267DOI10.1016/j.cam.2003.12.041
- Homeier H. H. H., 10.1016/j.cam.2004.07.027, J. Comput. Appl. Math. 176 (2005), no. 2, 425–432. MR2116403DOI10.1016/j.cam.2004.07.027
- Kou J., Li Y., Wang X., 10.1016/j.cam.2006.10.072, J. Comput. Appl. Math. 209 (2007), no. 2, 146–152. MR2387121DOI10.1016/j.cam.2006.10.072
- Noor M. A., Waseem M., 10.1016/j.camwa.2008.10.067, Comput. Math. Appl. 57 (2009), no. 1, 101–106. MR2484261DOI10.1016/j.camwa.2008.10.067
- Ren H., Argyros I. K., 10.1007/s11075-011-9501-6, Numer. Algorithms 59 (2012), no. 4, 505–521. MR2892562DOI10.1007/s11075-011-9501-6
- Rheinboldt W. C., An adaptive continuation process for solving systems of nonlinear equations, Mathematical models and numerical methods, Banach Center Publ., 3, PWN, Warszawa, 1978, pages 129–142. Zbl0378.65029MR0514377
- Shah F. A., Noor M. A., Some numerical methods for solving nonlinear equations by using decomposition technique, Appl. Math. Comput. 251 (2015), 378–386. MR3294725
- Sharma J. R., Gupta P., 10.1016/j.camwa.2013.12.004, Comput. Math. Appl. 67 (2014), no. 3, 591–601. MR3149734DOI10.1016/j.camwa.2013.12.004
- Traub J. F., Iterative Methods for the Solution of Equations, AMS Chelsea Publishing, New York, 1982. Zbl0672.65025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.