Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros; Santhosh George

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 2, page 219-229
  • ISSN: 0010-2628

Abstract

top
A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

How to cite

top

Argyros, Ioannis K., and George, Santhosh. "Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions." Commentationes Mathematicae Universitatis Carolinae 60.2 (2019): 219-229. <http://eudml.org/doc/294731>.

@article{Argyros2019,
abstract = {A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.},
author = {Argyros, Ioannis K., George, Santhosh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Newton-Jarratt's method; radius of convergence; local convergence; decomposition techniques; restricted convergence domain},
language = {eng},
number = {2},
pages = {219-229},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions},
url = {http://eudml.org/doc/294731},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Argyros, Ioannis K.
AU - George, Santhosh
TI - Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 2
SP - 219
EP - 229
AB - A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.
LA - eng
KW - Newton-Jarratt's method; radius of convergence; local convergence; decomposition techniques; restricted convergence domain
UR - http://eudml.org/doc/294731
ER -

References

top
  1. Amat S., Busquier S., Negra M., 10.1081/NFA-200042628, Numer. Funct. Anal. Optim. 25 (2004), no. 5–6, 397–405. Zbl1071.65077MR2106266DOI10.1081/NFA-200042628
  2. Argyros I. K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, Elsevier, Amsterdam, 2007. Zbl1147.65313MR2356038
  3. Argyros I. K., Cho Y. J., George S., 10.4134/JKMS.j150244, J. Korean Math. Soc. 53 (2016), no. 4, 781–793. MR3521238DOI10.4134/JKMS.j150244
  4. Argyros I. K., George S., 10.1007/s10092-015-0163-y, Calcolo 53 (2016), no. 4, 585–595. MR3574604DOI10.1007/s10092-015-0163-y
  5. Argyros I. K., Magreñán Á. A., Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems, Appl. Math. Comput. 241 (2014), 401–408. MR3223438
  6. Argyros I. K., Szidarovszky F., The Theory and Applications of Iteration Methods, Systems Engineering Series, CRC Press, Boca Raton, 1993. MR1272012
  7. Cordero A., Hueso J., Martinez E., Torregrosa J. R., 10.1007/s11075-009-9359-z, Numer. Algorithms 55 (2010), no. 1, 87–99. MR2679752DOI10.1007/s11075-009-9359-z
  8. Cordero A., Torregrosa J. R., Variants of Newton's method for functions of several variables, Appl. Math. Comput. 183 (2006), no. 1, 199–208. MR2282802
  9. Cordero A., Torregrosa J. R., Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput. 190 (2007), no. 1, 686–698. MR2338747
  10. Ezquerro J. A., Hernández M. A., Romero A. N., Approximacion de soluciones de algunas equacuaciones integrals de Hammerstein mediante metodos iterativos tipo, Newton, XXI Congresode ecuaciones diferenciales y aplicaciones Universidad de Castilla-La Mancha, Ciudad Real, 2009, 8 pages. 
  11. Grau-Sánchez M., Grau À., Noguera M., 10.1016/j.cam.2011.08.008, J. Comput. Appl. Math. 236 (2011), no. 6, 1259–1266. MR2854048DOI10.1016/j.cam.2011.08.008
  12. Gutiérrez J. M., Hernández M. A., 10.1093/imanum/20.4.521, IMA J. Numer. Anal. 20 (2000), no. 4, 521–532. MR1795296DOI10.1093/imanum/20.4.521
  13. Homeier H. H. H., 10.1016/j.cam.2003.12.041, J. Comput. Appl. Math. 169 (2004), no. 1, 161–169. MR2071267DOI10.1016/j.cam.2003.12.041
  14. Homeier H. H. H., 10.1016/j.cam.2004.07.027, J. Comput. Appl. Math. 176 (2005), no. 2, 425–432. MR2116403DOI10.1016/j.cam.2004.07.027
  15. Kou J., Li Y., Wang X., 10.1016/j.cam.2006.10.072, J. Comput. Appl. Math. 209 (2007), no. 2, 146–152. MR2387121DOI10.1016/j.cam.2006.10.072
  16. Noor M. A., Waseem M., 10.1016/j.camwa.2008.10.067, Comput. Math. Appl. 57 (2009), no. 1, 101–106. MR2484261DOI10.1016/j.camwa.2008.10.067
  17. Ren H., Argyros I. K., 10.1007/s11075-011-9501-6, Numer. Algorithms 59 (2012), no. 4, 505–521. MR2892562DOI10.1007/s11075-011-9501-6
  18. Rheinboldt W. C., An adaptive continuation process for solving systems of nonlinear equations, Mathematical models and numerical methods, Banach Center Publ., 3, PWN, Warszawa, 1978, pages 129–142. Zbl0378.65029MR0514377
  19. Shah F. A., Noor M. A., Some numerical methods for solving nonlinear equations by using decomposition technique, Appl. Math. Comput. 251 (2015), 378–386. MR3294725
  20. Sharma J. R., Gupta P., 10.1016/j.camwa.2013.12.004, Comput. Math. Appl. 67 (2014), no. 3, 591–601. MR3149734DOI10.1016/j.camwa.2013.12.004
  21. Traub J. F., Iterative Methods for the Solution of Equations, AMS Chelsea Publishing, New York, 1982. Zbl0672.65025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.